Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = nanostructured optical lens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6904 KiB  
Article
Considering Grayscale Process and Material Properties for Robust Multilevel Diffractive Flat Optics
by Diogo E. Aguiam, Ana Dias, Manuel J. L. F. Rodrigues, Aamod Shanker, Filipe Camarneiro, Joana D. Santos, Pablo Valentim, Joao Cunha and Patrícia C. Sousa
Photonics 2024, 11(12), 1200; https://doi.org/10.3390/photonics11121200 - 20 Dec 2024
Viewed by 928
Abstract
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- [...] Read more.
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- and nanostructures. Considering the resolution and tolerances of the production processes and the optical properties of the substrate and coating materials is crucial for designing robust multilevel diffractive flat optics. In this work, we evaluate the impact of the grayscale laser lithography resolution and geometry constraints on the efficiency of surface-relief diffractive lenses, and we analyze the process parameter space that limit lens performance. We introduce a spectral bandwidth metric to help evaluate the broad-spectrum performance of different materials. We simulate and experimentally observe that the diffractive focusing is dominated by the periodic wavelength-dependent phase discontinuities arising in the profile transitions of multilevel diffractive lenses. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

8 pages, 2759 KiB  
Communication
Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Optics
by Bartlomiej Lechowski, Kristina Kutukova, Joerg Grenzer, Iuliana Panchenko, Peter Krueger, Andre Clausner and Ehrenfried Zschech
Nanomaterials 2024, 14(2), 233; https://doi.org/10.3390/nano14020233 - 21 Jan 2024
Cited by 6 | Viewed by 2772
Abstract
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick–Baez) condenser optic and [...] Read more.
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick–Baez) condenser optic and a high aspect-ratio multilayer Laue lens—results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/Cu6Sn5/Cu microbump interconnects fabricated using solid–liquid interdiffusion (SLID) bonding. Full article
Show Figures

Figure 1

11 pages, 6580 KiB  
Article
Real-Time Imaging of Plasmonic Concentric Circular Gratings Fabricated by Lens–Axicon Laser Interference Lithography
by Mahyar Mazloumi and Ribal Georges Sabat
Micromachines 2023, 14(11), 1981; https://doi.org/10.3390/mi14111981 - 26 Oct 2023
Cited by 2 | Viewed by 1761
Abstract
Concentric circular gratings are diffractive optical elements useful for polarization-independent applications in photonics and plasmonics. They are usually fabricated using a low-throughput and expensive electron beam lithography technique. In this paper, concentric circular gratings with selectable pitch values were successfully manufactured on thin [...] Read more.
Concentric circular gratings are diffractive optical elements useful for polarization-independent applications in photonics and plasmonics. They are usually fabricated using a low-throughput and expensive electron beam lithography technique. In this paper, concentric circular gratings with selectable pitch values were successfully manufactured on thin films of azobenzene molecular glass using a novel laser interference lithography technique utilizing Bessel beams generated by a combined lens–axicon configuration. This innovative approach offers enhanced scalability and a simplified manufacturing process on larger surface areas compared to the previously reported techniques. Furthermore, the plasmonic characteristics of these concentric circular gratings were investigated using conventional spectrometric techniques after transferring the nanostructured patterns from azobenzene to transparent gold/epoxy thin films. In addition, the real-time imaging of surface plasmon resonance colors transmitted from the concentric circular gratings was obtained using a 45-megapixel digital camera. The results demonstrated a strong correlation between the real-time photographic technique and the spectroscopy measurements, validating the efficacy and accuracy of this approach for the colorimetric studying of surface plasmon resonance responses in thin film photonics. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2023)
Show Figures

Figure 1

15 pages, 66014 KiB  
Article
Preparation of Transparent Sandwich-like Superhydrophobic Coating on Glass with High Stability and Self-Cleaning Properties
by Qiang Li, Hongming Liang, Jinlong Song, Chenguang Guo and Jinbao Tang
Coatings 2022, 12(2), 228; https://doi.org/10.3390/coatings12020228 - 10 Feb 2022
Cited by 6 | Viewed by 3332
Abstract
High stability and transparent superhydrophobic coating on a glass substrate that can effectively repel the wetting dust as a self-cleaning property are beneficial traits for solving the decrease in optical lens clarity in an unmanned underground mining environment. However, the transparent superhydrophobic coating [...] Read more.
High stability and transparent superhydrophobic coating on a glass substrate that can effectively repel the wetting dust as a self-cleaning property are beneficial traits for solving the decrease in optical lens clarity in an unmanned underground mining environment. However, the transparent superhydrophobic coating has still not been applied due to the contradiction between visibility, hydrophobicity and durability. Herein, a sandwich-like superhydrophobic coating was designed and prepared on borosilicate glass, which consisted of a micro/nanostructure body of neutral silicone sealant (primer) and hydrophobic silica nanoparticles (interlayer), as well as a protective layer of ultraviolet (UV) gel. The coated glass exhibited excellent superhydrophobicity towards many aqueous solutions, and had highly visible light transparency of 80% at 4 wt.% primer mass content. Furthermore, significant tests including the droplet impact, hot water boiling, stirring in acetic acid aqueous solution and sandpaper abrasion were performed on our superhydrophobic coating, which indicated that the obtained transparent coating had good stability and excellent mechanical durability. The coated glass also showed a more wonderful self-cleaning property compared with that of the original glass. This superhydrophobic coating on glass substrate, fabricated by a facile and cost-effective layer-by-layer construction approach, has great potential for general and practical application in the unmanned mining environment under multiple dust and atomized water conditions. Full article
Show Figures

Graphical abstract

11 pages, 2829 KiB  
Article
Bioinspired Microstructured Polymer Surfaces with Antireflective Properties
by Alexandre Emmanuel Wetzel, Nuria del Castillo Iniesta, Einstom Engay, Nikolaj Kofoed Mandsberg, Celine Schou Dinesen, Bilal Rashid Hanif, Kirstine Berg-Sørensen, Ada-Ioana Bunea and Rafael Taboryski
Nanomaterials 2021, 11(9), 2298; https://doi.org/10.3390/nano11092298 - 4 Sep 2021
Cited by 13 | Viewed by 4394
Abstract
Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro- and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for [...] Read more.
Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro- and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for example, are well known and have been successfully replicated using micro- and nanofabrication. However, other animal species, such as birds of paradise and peacock spiders, have evolved to display larger structures with antireflective features. In peacock spiders, the antireflective properties of their super black patches arise from relatively simple microstructures with lens-like shapes organized in tightly packed hexagonal arrays, which makes them a good candidate for cheap mass replication techniques. In this paper, we present the fabrication and characterization of antireflective microarrays inspired by the peacock spider’s super black structures encountered in nature. Firstly, different microarrays 3D models are generated from a surface equation. Secondly, the arrays are fabricated in a polyacrylate resin by super-resolution 3D printing using two-photon polymerization. Thirdly, the resulting structures are inspected using a scanning electron microscope. Finally, the reflectance and transmittance of the printed structures are characterized at normal incidence with a dedicated optical setup. The bioinspired microlens arrays display excellent antireflective properties, with a measured reflectance as low as 0.042 ± 0.004% for normal incidence, a wavelength of 550 nm, and a collection angle of 14.5°. These values were obtained using a tightly-packed array of slightly pyramidal lenses with a radius of 5 µm and a height of 10 µm. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

13 pages, 4846 KiB  
Article
Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching
by Angela M. Baracu, Christopher A. Dirdal, Andrei M. Avram, Adrian Dinescu, Raluca Muller, Geir Uri Jensen, Paul Conrad Vaagen Thrane and Hallvard Angelskår
Micromachines 2021, 12(5), 501; https://doi.org/10.3390/mi12050501 - 29 Apr 2021
Cited by 33 | Viewed by 6914
Abstract
The research field of metasurfaces has attracted considerable attention in recent years due to its high potential to achieve flat, ultrathin optical devices of high performance. Metasurfaces, consisting of artificial patterns of subwavelength dimensions, often require fabrication techniques with high aspect ratios (HARs). [...] Read more.
The research field of metasurfaces has attracted considerable attention in recent years due to its high potential to achieve flat, ultrathin optical devices of high performance. Metasurfaces, consisting of artificial patterns of subwavelength dimensions, often require fabrication techniques with high aspect ratios (HARs). Bosch and Cryogenic methods are the best etching candidates of industrial relevance towards the fabrication of these nanostructures. In this paper, we present the fabrication of Silicon (Si) metalenses by the UV-Nanoimprint Lithography method and cryogenic Deep Reactive Ion Etching (DRIE) process and compare the results with the same structures manufactured by Bosch DRIE both in terms of technological achievements and lens efficiencies. The Cryo- and Bosch-etched lenses attain efficiencies of around 39% at wavelength λ = 1.50 µm and λ = 1.45 µm against a theoretical level of around 61% (for Si pillars on a Si substrate), respectively, and process modifications are suggested towards raising the efficiencies further. Our results indicate that some sidewall surface roughness of the Bosch DRIE is acceptable in metalense fabrication, as even significant sidewall surface roughness in a non-optimized Bosch process yields reasonable efficiency levels. Full article
Show Figures

Figure 1

8 pages, 1699 KiB  
Article
Design of Multifunctional Janus Metasurface Based on Subwavelength Grating
by Ruonan Ji, Chuan Jin, Kun Song, Shao-Wei Wang and Xiaopeng Zhao
Nanomaterials 2021, 11(4), 1034; https://doi.org/10.3390/nano11041034 - 19 Apr 2021
Cited by 19 | Viewed by 3824
Abstract
In this paper, a Janus metasurface is designed by breaking the structural symmetry based on the polarization selection property of subwavelength grating. The structure comprises three layers: a top layer having a metallic nanostructure, a dielectric spacer, and a bottom layer having subwavelength [...] Read more.
In this paper, a Janus metasurface is designed by breaking the structural symmetry based on the polarization selection property of subwavelength grating. The structure comprises three layers: a top layer having a metallic nanostructure, a dielectric spacer, and a bottom layer having subwavelength grating. For a forward incidence, the metal-insulator-metal (MIM) structure operates as a gap plasmonic cavity if the linearly polarized (LP) component is parallel to the grating wires. It also acts as a high-efficiency dual-layer grating polarizer for the orthogonal LP component. For the backward incidence, the high reflectance of the grating blocks the function of the gap plasmonic cavity, leading to its pure functioning as a polarizer. A bifunctional Janus metasurface for 45 degrees beam deflector and polarizer, with a transmission of 0.87 and extinction ratio of 3840, is designed at 1.55 μm and is investigated to prove the validity of the proposed strategy. Moreover, the proposed metasurface can be cascaded to achieve more flexible functions since these functions are independent in terms of operational mechanism and structural parameters. A trifunctional Janus metasurface that acts as a focusing lens, as a reflector, and as a polarizer is designed based on this strategy. The proposed metasurface and the design strategy provide convenience and flexibility in the design of multifunctional, miniaturized, and integrated optical components for polarization-related analysis and for detection systems. Full article
(This article belongs to the Special Issue State-of-the-Art Nanophotonics Materials and Devices in China)
Show Figures

Graphical abstract

12 pages, 6657 KiB  
Article
Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells
by Yasushi Shoji, Ryo Tamaki and Yoshitaka Okada
Nanomaterials 2021, 11(2), 344; https://doi.org/10.3390/nano11020344 - 29 Jan 2021
Cited by 11 | Viewed by 3065
Abstract
From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This [...] Read more.
From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This mechanism requires the formation of a strong quantum confinement structure. Therefore, we focused on the material system with GaSb quantum nanostructures embedded in AlGaAs layers. However, studies involving crystal growth of GaSb quantum nanostructures on AlGaAs layers have rarely been reported. In our work, we fabricated GaSb quantum dots (QDs) and quantum rings (QRs) on AlGaAs layers via molecular-beam epitaxy. Using the Stranski–Krastanov growth mode, we demonstrated that lens-shaped GaSb QDs can be fabricated on AlGaAs layers. In addition, atomic force microscopy measurements revealed that GaSb QDs could be changed to QRs under irradiation with an As molecular beam even when they were deposited onto AlGaAs layers. We also investigated the suitability of GaSb/AlGaAs QDSCs and QRSCs for use in IBSCs by evaluating the temperature characteristics of their external quantum efficiency. For the GaSb/AlGaAs material system, the QDSC was found to have slightly better two-step optical excitation temperature characteristics than the QRSC. Full article
(This article belongs to the Special Issue Nanostructured Materials for Solar Cell Applications)
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Miniaturized Metalens Based Optical Tweezers on Liquid Crystal Droplets for Lab-on-a-Chip Optical Motors
by Satayu Suwannasopon, Fabian Meyer, Christian Schlickriede, Papichaya Chaisakul, Jiraroj T-Thienprasert, Jumras Limtrakul, Thomas Zentgraf and Nattaporn Chattham
Crystals 2019, 9(10), 515; https://doi.org/10.3390/cryst9100515 - 7 Oct 2019
Cited by 18 | Viewed by 5283
Abstract
Surfaces covered with layers of ultrathin nanoantenna structures—so called metasurfaces have recently been proven capable of completely controlling phase of light. Metalenses have emerged from the advance in the development of metasurfaces providing a new basis for recasting traditional lenses into thin, planar [...] Read more.
Surfaces covered with layers of ultrathin nanoantenna structures—so called metasurfaces have recently been proven capable of completely controlling phase of light. Metalenses have emerged from the advance in the development of metasurfaces providing a new basis for recasting traditional lenses into thin, planar optical components capable of focusing light. The lens made of arrays of plasmonic gold nanorods were fabricated on a glass substrate by using electron beam lithography. A 1064 nm laser was used to create a high intensity circularly polarized light focal spot through metalens of focal length 800 µm, N.A. = 0.6 fabricated based on Pancharatnam-Berry phase principle. We demonstrated that optical rotation of birefringent nematic liquid crystal droplets trapped in the laser beam was possible through this metalens. The rotation of birefringent droplets convinced that the optical trap possesses strong enough angular momentum of light from radiation of each nanostructure acting like a local half waveplate and introducing an orientation-dependent phase to light. Here, we show the success in creating a miniaturized and robust metalens based optical tweezers system capable of rotating liquid crystals droplets to imitate an optical motor for future lab-on-a-chip applications. Full article
(This article belongs to the Special Issue Localized Optical Modes in Liquid Crystals)
Show Figures

Figure 1

8 pages, 1858 KiB  
Article
Double-Sided Anti-Reflection Nanostructures on Optical Convex Lenses for Imaging Applications
by Hyuk Jae Jang, Yeong Jae Kim, Young Jin Yoo, Gil Ju Lee, Min Seok Kim, Ki Soo Chang and Young Min Song
Coatings 2019, 9(6), 404; https://doi.org/10.3390/coatings9060404 - 21 Jun 2019
Cited by 17 | Viewed by 8194
Abstract
Anti-reflection coatings (ARCs) from the cornea nipple array of the moth-eye remarkably suppress the Fresnel reflection at the interface in broadband wavelength ranges. ARCs on flat glass have been studied to enhance the optical transmittance. However, little research on the implementation of ARCs [...] Read more.
Anti-reflection coatings (ARCs) from the cornea nipple array of the moth-eye remarkably suppress the Fresnel reflection at the interface in broadband wavelength ranges. ARCs on flat glass have been studied to enhance the optical transmittance. However, little research on the implementation of ARCs on curved optical lenses, which are the core element in imaging devices, has been reported. Here, we report double-sided, bio-inspired ARCs on bi-convex lenses with high uniformity. We theoretically optimize the nanostructure geometry, such as the height, period, and morphology, since an anti-reflection property results from the gradually changed effective refractive index by the geometry of nanostructures. In an experiment, the transmittance of an ARCs lens increases up to 10% for a broadband spectrum without distortion in spot size and focal length. Moreover, we demonstrate ~30% improved transmittance of an imaging system composed of three bi-convex lenses, in series with double-sided ARCs (DARCs). Full article
(This article belongs to the Special Issue Semiconductor Thin Films)
Show Figures

Graphical abstract

Back to TopTop