Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nanostructured metallic top contact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3493 KiB  
Article
Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt
by Ayoub Laghrissi and Mohammed Es-Souni
Nanomaterials 2023, 13(13), 2007; https://doi.org/10.3390/nano13132007 - 5 Jul 2023
Cited by 2 | Viewed by 2020
Abstract
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered [...] Read more.
Ordered thin films of Au nanorods (NRs) on Ti/Au/Si heterostructure substrates are electrodeposited in thin film aluminum oxide templates and, after template removal, serve as supports for Pd and Pt nanocatalysts. Based on previous work which showed a better electrocatalytic performance for layered Au/Pd nanostructures than monolithic Pd, electrodeposited 20 nm Pd discs on Au-NRs are first investigated in terms of their catalytic activity for the hydrogen evolution reaction (HER) and compared to monolithic 20 nm Pd and Pt discs. To further boost performance, the interfacial interaction area between the Au-NRs supports and the active metals (Pt and Pd) was increased via magnetron sputtering an extremely thin layer of Pt and Pd (20 nm overall sputtered thickness) on the Au-NRs after template removal. In this way, the whole NR surface (top and lateral) was covered with Pt and Pd nanoparticles, ensuring a maximum interfacial contact between the support and the active metal. The HER performance obtained was substantially higher than that of the other nanostructures. A Salient result of the present work, however, is the superior activity obtained for sputtered Pd on Au in comparison to that of sputtered Pt on Au. The results also show that increasing the Au-NR length translates in a strong increase in performance. Density functional theory calculations show that the interfacial electronic interactions between Au and Pd lead to suitable values of hydrogen adsorption energy on all possible sites, thus promoting faster (barrier-free diffusion) hydrogen adsorption and its recombination to H2. A Volmer–Heyrovsky mechanism for HER is proposed, and a volcano plot is suggested based on the results of the Tafel plots and the calculated hydrogen adsorption energies. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

12 pages, 4880 KiB  
Article
Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices
by Mirko Poljak and Mislav Matić
Nanomaterials 2023, 13(11), 1759; https://doi.org/10.3390/nano13111759 - 29 May 2023
Cited by 3 | Viewed by 1443
Abstract
We employ atomistic quantum transport simulations based on non-equilibrium Green’s function (NEGF) formalism of quasi-one-dimensional (quasi-1D) phosphorene, or phosphorene nanoribbons (PNRs), to explore routes towards minimizing contact resistance (RC) in devices based on such nanostructures. The impact of PNR width [...] Read more.
We employ atomistic quantum transport simulations based on non-equilibrium Green’s function (NEGF) formalism of quasi-one-dimensional (quasi-1D) phosphorene, or phosphorene nanoribbons (PNRs), to explore routes towards minimizing contact resistance (RC) in devices based on such nanostructures. The impact of PNR width scaling from ~5.5 nm down to ~0.5 nm, different hybrid edge-and-top metal contact configurations, and various metal–channel interaction strengths on the transfer length and RC is studied in detail. We demonstrate that optimum metals and top-contact lengths exist and depend on PNR width, which is a consequence of resonant transport and broadening effects. We find that moderately interacting metals and nearly edge contacts are optimum only for wider PNRs and phosphorene, providing a minimum RC of ~280 Ωμm. Surprisingly, ultra-narrow PNRs benefit from weakly interacting metals combined with long top contacts that lead to an added RC of only ~2 Ωμm in the 0.49 nm wide quasi-1D phosphorene nanodevice. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 19556 KiB  
Article
Investigation of Electrochemical Assisted Deposition of Sol-Gel Silica Films for Long-Lasting Superhydrophobicity
by Baoming Zhou, Yongling Wu and Hongyu Zheng
Materials 2023, 16(4), 1417; https://doi.org/10.3390/ma16041417 - 8 Feb 2023
Cited by 10 | Viewed by 2898
Abstract
Current methods for the protection of metal surfaces utilize harsh chemical processes, such as organic paint or electro-plating, which are not environment-friendly and require extensive waste treatments. In this study, a two-step approach consisting of electrochemical assisted deposition (EAD) of an aqueous silane [...] Read more.
Current methods for the protection of metal surfaces utilize harsh chemical processes, such as organic paint or electro-plating, which are not environment-friendly and require extensive waste treatments. In this study, a two-step approach consisting of electrochemical assisted deposition (EAD) of an aqueous silane solution and a dip coating of a low surface energy silane for obtaining a superhydrophobic self-cleaning surface for the enhanced protection of copper substrate is presented. A porous and hierarchical micro-nanostructured silica basecoat (sol-gel) was first formed by EAD of a methyltriethoxysilane (MTES) precursor solution on a copper substrate. Then, a superhydrophobic top-coat (E-MTES/PFOTS) was prepared with 1H,1H,2H,2H-Perfluorooctyltriethoxysilane (PFOTS) for low surface energy. The superhydrophobic coating exhibited anti-stain properties against milk, cola, and oil, with contact angles of 151°, 151.5°, and 129°, respectively. The EAD deposition potential and duration were effective in controlling the microscopic morphology, surface roughness, and coating thickness. The E-MTES/PFOTS coatings exhibited chemical stability against acids, bases, and abrasion resistance by sandpaper. The proposed 2-layer coating system exhibited strong chemical bonding at the two interfaces and provided a brush-like surface morphology with long-lasting superhydrophobicity. The developed method would provide an environment-friendly and expedient process for uniform protective coatings on complex surfaces. Full article
Show Figures

Graphical abstract

14 pages, 1621 KiB  
Article
Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array
by Marzia Ferrera, Lorenzo Ramò, Domenica Convertino, Giorgio Orlandini, Simona Pace, Ilya Milekhin, Michele Magnozzi, Mahfujur Rahaman, Dietrich R. T. Zahn, Camilla Coletti, Maurizio Canepa and Francesco Bisio
Chemosensors 2022, 10(3), 120; https://doi.org/10.3390/chemosensors10030120 - 21 Mar 2022
Cited by 5 | Viewed by 4207
Abstract
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical [...] Read more.
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system. Full article
Show Figures

Graphical abstract

9 pages, 2364 KiB  
Article
Nanostructured Top Contact as an Alternative to Transparent Conductive Oxides in Tandem Perovskite/c-Si Solar Cells
by Mahmoud H. Elshorbagy, Oscar Esteban, Alexander Cuadrado and Javier Alda
Appl. Sci. 2022, 12(4), 1854; https://doi.org/10.3390/app12041854 - 11 Feb 2022
Cited by 3 | Viewed by 2945
Abstract
In the competition of solar cell efficiency, besides top-performance multijunction cells, tandem cells based on perovskites are also breaking efficiency records to enter into the 30% range. Their design takes advantage of the rapid development of perovskite cells, and the good sharing of [...] Read more.
In the competition of solar cell efficiency, besides top-performance multijunction cells, tandem cells based on perovskites are also breaking efficiency records to enter into the 30% range. Their design takes advantage of the rapid development of perovskite cells, and the good sharing of the available spectrum between the perovskite, absorbing at short wavelengths, and the c-Si or similar lower band gap material, working at longer wavelengths. In this paper, we present a novel tandem solar cell that combines crystalline silicon (c-Si) and perovskites cells. We analyzed the device with computational electromagnetism based on the finite element method. Our design arranges the perovskite solar cell as a multilayer 1D grating, which is terminated with a gold thin film (top metallic contact). This multilayer nanostructure is placed on top of the c-Si cell and a thin protective dielectric layer of aluminum nitride covers the whole device. The short-circuit current of the perovskite cell is maximized by maintaining the current-matching conditions with the output from the c-Si cell. This optimization considers the geometrical parameters of the grating: period and thickness of the active layer of the perovskite cell. We compared the simulated short-circuit current of this device to the planar tandem solar cell with indium tin oxide (top contact). The comparison shows a slight increment, around 3%, of our device’s performance. Moreover, it has the potential capability to circumvent postprocessing procedures used with transparent contact oxides, which can reduce the device’s final efficiency. Furthermore, our proposed design can take advantage of photolithographic and nanoimprint techniques, enabling large-scale production at a relatively low cost. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Photovoltaic Materials)
Show Figures

Figure 1

16 pages, 5740 KiB  
Article
Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells
by Chzu-Chiang Tseng, Gwomei Wu, Liann-Be Chang, Ming-Jer Jeng, Wu-Shiung Feng, Dave W. Chen, Lung-Chien Chen and Kuan-Lin Lee
Nanomaterials 2020, 10(3), 521; https://doi.org/10.3390/nano10030521 - 13 Mar 2020
Cited by 15 | Viewed by 4048
Abstract
This paper presents new photovoltaic solar cells with Cu2ZnSnSe4/CH3NH3PbI3(MAPbI3)/ZnS/IZO/Ag nanostructures on bi-layer Mo/FTO (fluorine-doped tin oxide) glasssubstrates. The hole-transporting layer, active absorber layer, electron-transporting layer, transparent-conductive oxide layer, and top electrode-metal [...] Read more.
This paper presents new photovoltaic solar cells with Cu2ZnSnSe4/CH3NH3PbI3(MAPbI3)/ZnS/IZO/Ag nanostructures on bi-layer Mo/FTO (fluorine-doped tin oxide) glasssubstrates. The hole-transporting layer, active absorber layer, electron-transporting layer, transparent-conductive oxide layer, and top electrode-metal contact layer, were made of Cu2ZnSnSe4, MAPbI3 perovskite, zincsulfide, indium-doped zinc oxide, and silver, respectively. The active absorber MAPbI3 perovskite film was deposited on Cu2ZnSnSe4 hole-transporting layer that has been annealed at different temperatures. TheseCu2ZnSnSe4 filmsexhibitedthe morphology with increased crystal grain sizesand reduced pinholes, following the increased annealing temperature. When the perovskitefilm thickness was designed at 700 nm, the Cu2ZnSnSe4 hole-transporting layer was 160 nm, and the IZO (indium-zinc oxide) at 100 nm, and annealed at 650 °C, the experimental results showed significant improvements in the solar cell characteristics. The open-circuit voltage was increased to 1.1 V, the short-circuit current was improved to 20.8 mA/cm2, and the device fill factor was elevated to 76.3%. In addition, the device power-conversion efficiency has been improved to 17.4%. The output power Pmax was as good as 1.74 mW and the device series-resistance was 17.1 Ω. Full article
Show Figures

Figure 1

Back to TopTop