Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = naftopidil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3303 KiB  
Article
Development of an In Vitro Methodology to Assess the Bioequivalence of Orally Disintegrating Tablets Taken without Water
by Toshihide Takagi, Takato Masada, Keiko Minami, Makoto Kataoka and Shinji Yamashita
Pharmaceutics 2023, 15(9), 2192; https://doi.org/10.3390/pharmaceutics15092192 - 24 Aug 2023
Cited by 4 | Viewed by 2425
Abstract
To assess the probability of bioequivalence (BE) between orally disintegrating tablets (ODTs) taken without water and conventional tablets (CTs) taken with water, an in vitro biorelevant methodology was developed using the BE Checker, which reproduces fluid shifts in the gastrointestinal tract and drug [...] Read more.
To assess the probability of bioequivalence (BE) between orally disintegrating tablets (ODTs) taken without water and conventional tablets (CTs) taken with water, an in vitro biorelevant methodology was developed using the BE Checker, which reproduces fluid shifts in the gastrointestinal tract and drug permeation. In addition to the fluid shift from the stomach to the small intestine, the process of ODT disintegration in a small amount of fluid in the oral cavity and the difference in gastric emptying caused by differences in water intake were incorporated into the evaluation protocol. Assuming a longer time to maximum plasma concentration after oral administration of ODTs taken without water than for CTs taken with water due to a delay in gastric emptying, the fluid shift in the donor chamber of the BE Checker without water was set longer than that taken with water. In the case of naftopidil ODTs and CTs, the values of the f2 function, representing the similarity of the permeation profiles, were 50 or higher when the fluid shift in ODTs taken without water was set at 1.5 or 2 times longer than that of the CTs taken with water. The values of the f2 function in permeation profiles of pitavastatin and memantine ODTs were both 62 when the optimized experimental settings for naftopidil formulations were applied. This methodology can be useful in formulation studies for estimating the BE probability between ODTs and CTs. Full article
Show Figures

Figure 1

15 pages, 3374 KiB  
Article
Inhibition of Liquid–Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil
by Masafumi Fukiage, Kyosuke Suzuki, Maki Matsuda, Yohei Nishida, Michinori Oikawa, Takuya Fujita and Kohsaku Kawakami
Pharmaceutics 2022, 14(12), 2664; https://doi.org/10.3390/pharmaceutics14122664 - 30 Nov 2022
Cited by 5 | Viewed by 2356
Abstract
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 [...] Read more.
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid–liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests. Full article
(This article belongs to the Special Issue Recent Advances in Amorphous Drug)
Show Figures

Figure 1

10 pages, 2138 KiB  
Article
Analyses of the Mode of Action of an Alpha-Adrenoceptor Blocker in Substantia Gelatinosa Neurons in Rats
by Daisuke Uta, Tsuyoshi Hattori and Megumu Yoshimura
Int. J. Mol. Sci. 2021, 22(17), 9636; https://doi.org/10.3390/ijms22179636 - 6 Sep 2021
Viewed by 2595
Abstract
To elucidate why naftopidil increases the frequency of spontaneous synaptic currents in only some substantia gelatinosa (SG) neurons, post-hoc analyses were performed. Blind patch-clamp recording was performed using slice preparations of SG neurons from the spinal cords of adult rats. Spontaneous inhibitory and [...] Read more.
To elucidate why naftopidil increases the frequency of spontaneous synaptic currents in only some substantia gelatinosa (SG) neurons, post-hoc analyses were performed. Blind patch-clamp recording was performed using slice preparations of SG neurons from the spinal cords of adult rats. Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were recorded. The ratios of the frequency and amplitude of the sIPSCs and sEPSCs following the introduction of naftopidil compared with baseline, and after the application of naftopidil, serotonin (5-HT), and prazosin, compared with noradrenaline (NA) were evaluated. First, the sIPSC analysis indicated that SG neurons reached their full response ratio for NA at 50 μM. Second, they responded to 5-HT (50 μM) with a response ratio similar to that for NA, but prazosin (10 μM) did not change the sEPSCs and sIPSCs. Third, the highest concentration of naftopidil (100 μM) led to two types of response in the SG neurons, which corresponded with the reactions to 5-HT and prazosin. These results indicate that not all neurons were necessarily activated by naftopidil, and that the micturition reflex may be regulated in a sophisticated manner by inhibitory mechanisms in these interneurons. Full article
(This article belongs to the Special Issue GABAergic and Glycinergic Neurons)
Show Figures

Figure 1

17 pages, 32519 KiB  
Article
Bioequivalence of Oral Drug Products in the Healthy and Special Populations: Assessment and Prediction Using a Newly Developed In Vitro System “BE Checker”
by Takato Masada, Toshihide Takagi, Keiko Minami, Makoto Kataoka, Ken-ichi Izutsu, Kazuki Matsui and Shinji Yamashita
Pharmaceutics 2021, 13(8), 1136; https://doi.org/10.3390/pharmaceutics13081136 - 26 Jul 2021
Cited by 10 | Viewed by 3782
Abstract
In order to assess and predict the bioequivalence (BE) of oral drug products, a new in vitro system “BE checker” was developed, which reproduced the environmental changes in the gastrointestinal (GI) tract by changing the pH, composition, and volume of the medium in [...] Read more.
In order to assess and predict the bioequivalence (BE) of oral drug products, a new in vitro system “BE checker” was developed, which reproduced the environmental changes in the gastrointestinal (GI) tract by changing the pH, composition, and volume of the medium in a single chamber. The dissolution and membrane permeation profiles of drugs from marketed products were observed in the BE checker under various conditions reflecting the inter-patient variations of the GI physiology. As variable factors, initial gastric pH, gastric emptying time, and GI agitation strength were varied in vitro. Dipyridamole, a basic drug, showed rapid and supersaturated dissolution when the paddle speed in the donor chamber was 200 rpm, which corresponds to the high agitation strength in the stomach. In contrast, supersaturated dissolution disappeared, and the permeated amount decreased under the conditions with a slow paddle speed (100 and 50 rpm) and short gastric emptying time (10 min). In those conditions, disintegration of the formulation was delayed, and the subsequent dissolution of dipyridamole was not completed before the fluid pH was changed to neutral. Similar results were obtained when the initial gastric pH was increased to 3.0, 5.0, and 6.5. To investigate that those factors also affect the BE of oral drug products, dissolution and permeation of naftopidil from its ordinary and orally disintegrating (OD) tablets were observed in the BE checker. Both products showed the similar dissolution profiles when the paddle speed and gastric emptying time were set to 100 rpm and 10 or 20 min, respectively. However, at a low paddle speed (50 rpm), the dissolution of naftopidil from ordinary tablets was slower than that from the OD tablets, and the permeation profiles became dissimilar. These results indicated the possibility of the bioinequivalence of some oral formulations in special patients whose GI physiologies are different from those in the healthy subjects. The BE checker can be a highly capable in vitro tool to assess the BE of oral drug products in various populations. Full article
Show Figures

Figure 1

21 pages, 1031 KiB  
Review
Drug Repositioning of the α1-Adrenergic Receptor Antagonist Naftopidil: A Potential New Anti-Cancer Drug?
by Romane Florent, Laurent Poulain and Monique N'Diaye
Int. J. Mol. Sci. 2020, 21(15), 5339; https://doi.org/10.3390/ijms21155339 - 27 Jul 2020
Cited by 16 | Viewed by 4425
Abstract
Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug [...] Read more.
Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug or appearance of non-manageable side effects. Another way to find alternative therapeutic drugs consists in identifying new applications for drugs already approved for a particular disease: a concept named “drug repurposing”. In this context, several studies demonstrated the potential anti-tumour activity exerted by α1-adrenergic receptor antagonists and notably renewed interest for naftopidil as an anti-cancer drug. Naftopidil is used for benign prostatic hyperplasia management in Japan and a retrospective study brought out a reduced incidence of prostate cancer in patients that had been prescribed this drug. Further studies showed that naftopidil exerted anti-proliferative and cytotoxic effects on prostate cancer as well as several other cancer types in vitro, as well as ex vivo and in vivo. Moreover, naftopidil was demonstrated to modulate the expression of Bcl-2 family pro-apoptotic members which could be used to sensitise cancer cells to targeting therapies and to overcome resistance of cancer cells to apoptosis. For most of these anti-cancer effects, the molecular pathway is either not fully deciphered or shown to involve α1-adrenergic receptor-independent pathway, suggesting off target transduction signals. In order to improve its efficacy, naftopidil analogues were designed and shown to be effective in several studies. Thereby, naftopidil appears to display anti-cancer properties on different cancer types and could be considered as a candidate for drug repurposing although its anti-cancerous activities need to be studied more deeply in prospective randomized clinical trials. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

25 pages, 1842 KiB  
Review
The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers
by Mallory Batty, Rachel Pugh, Ilampirai Rathinam, Joshua Simmonds, Edwin Walker, Amanda Forbes, Shailendra Anoopkumar-Dukie, Catherine M. McDermott, Briohny Spencer, David Christie and Russ Chess-Williams
Int. J. Mol. Sci. 2016, 17(8), 1339; https://doi.org/10.3390/ijms17081339 - 16 Aug 2016
Cited by 32 | Viewed by 9360
Abstract
This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease [...] Read more.
This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa). Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists) induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Figure 1

11 pages, 1720 KiB  
Review
1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1- yloxy)propan-2-ol May Be a Promising Anticancer Drug
by Tomoyuki Nishizaki, Takeshi Kanno, Ayako Tsuchiya, Yoshiko Kaku, Tadashi Shimizu and Akito Tanaka
Molecules 2014, 19(12), 21462-21472; https://doi.org/10.3390/molecules191221462 - 19 Dec 2014
Cited by 11 | Viewed by 8867
Abstract
We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS 1015) as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate [...] Read more.
We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS 1015) as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis) and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy. Full article
Show Figures

Figure 1

Back to TopTop