Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = multisine excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3126 KiB  
Article
Multiband Multisine Excitation Signal for Online Impedance Spectroscopy of Battery Cells
by Roberta Ramilli, Nicola Lowenthal, Marco Crescentini and Pier Andrea Traverso
Batteries 2025, 11(5), 188; https://doi.org/10.3390/batteries11050188 - 10 May 2025
Viewed by 921
Abstract
Multisine electrochemical impedance spectroscopy (EIS) represents a highly promising technique for the online characterization of battery functional states, offering the potential to monitor, in real-time, key degradation phenomena such as aging, internal resistance variation, and state of health (SoH) evolution. However, its widespread [...] Read more.
Multisine electrochemical impedance spectroscopy (EIS) represents a highly promising technique for the online characterization of battery functional states, offering the potential to monitor, in real-time, key degradation phenomena such as aging, internal resistance variation, and state of health (SoH) evolution. However, its widespread adoption in embedded systems is currently limited by the need to balance measurement accuracy with strict energy constraints and the requirement for short acquisition times. This work proposes a novel broadband EIS approach based on a multiband multisine excitation strategy in which the excitation signal spectrum is divided into multiple sub-bands that are sequentially explored. This enables the available energy to be concentrated on a limited portion of the spectrum at a time, thereby significantly improving the signal-to-noise ratio (SNR) without substantially increasing the total measurement time. The result is a more energy-efficient method that maintains high diagnostic precision. We further investigated the optimal design of these multiband multisine sequences, taking into account realistic constraints imposed by the sensing hardware such as limitations in excitation amplitude and noise level. The effectiveness of the proposed method was demonstrated within a comprehensive simulation framework implementing a complete impedance measurement system. Compared with conventional excitation techniques (i.e., the sine sweep and the classical single-band multisine methods), the proposed strategy is an optimal trade-off solution both in terms of energy efficiency and measurement time. Therefore, the technique is a valuable solution for real-time, embedded, and in situ battery diagnostics, with direct implications for the development of intelligent battery management systems (BMS), predictive maintenance, and enhanced safety in energy storage applications. Full article
(This article belongs to the Special Issue Recent Advances in Battery Measurement and Management Systems)
Show Figures

Figure 1

19 pages, 11984 KiB  
Article
Stability Analysis via Impedance Modelling of a Real-World Wind Generation System with AC Collector and LCC-Based HVDC Transmission Grid
by Muhammad Arshad, Omid Beik, Muhammad Owais Manzoor and Mahzad Gholamian
Electronics 2024, 13(10), 1917; https://doi.org/10.3390/electronics13101917 - 14 May 2024
Cited by 5 | Viewed by 1629
Abstract
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission [...] Read more.
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission grid rated at ±250 kV. The HVDC line transfers a total power of 0.5 GW, while both the HVDC rectifier and inverter substations use line-commuted converters (LCCs). The LCC-based rectifier adopts constant DC current control to regulate HVDC current, while the inverter operates in constant extinction angle control mode to maintain a fixed HVDC voltage. This paper proposes a frequency scan-based approach to obtain the d–q impedance model of (i) BWGS AC collector grids with Type 4 wind turbines that use permanent magnet synchronous generators (PMSGs) and two fully rated converters, and (ii) an LCC-HVDC system. The impedance frequency response of the BWGS is acquired by exciting the AC collector grid and LCC-HVDC with multi-sine voltage perturbations during its steady-state operation. The resulting voltage and current signals are subjected to a fast Fourier transform (FFT) to extract frequency components. By analyzing the impedance frequency response measurement of BWGS, a linear time–invariant (LTI) representation of its dynamics is obtained using the vector fitting (VF) technique. Finally, a Bode plot is applied, considering the impedance of the BWGS and grid to perform stability analyses. This study examines the influence of the short circuit ratio (SCR) of the grid and the phase lock loop (PLL) frequency bandwidth on the stability of the overall system. The findings provide valuable insights for the design and verification of an AC collector and LCC-based HVDC transmission systems. The findings suggest that the extraction of the impedance model of a real-world wind farm, achieved through frequency scanning and subsequent representation as an LTI system using VF, is regarded as a robust, suitable, and accurate methodology for investigating the dynamics, unstable operating conditions, and control interaction of the wind farm and LCC-HVDC system with the AC grid. Full article
(This article belongs to the Special Issue A Mass Adoption of Power Electronics in Wind Power System)
Show Figures

Figure 1

14 pages, 4592 KiB  
Article
Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm
by Ahmed Yahia Kallel and Olfa Kanoun
Batteries 2022, 8(10), 176; https://doi.org/10.3390/batteries8100176 - 12 Oct 2022
Cited by 9 | Viewed by 4180
Abstract
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic [...] Read more.
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

18 pages, 3352 KiB  
Article
A Method for Monitoring State-of-Charge of Lithium-Ion Cells Using Multi-Sine Signal Excitation
by Jonghyeon Kim and Julia Kowal
Batteries 2021, 7(4), 76; https://doi.org/10.3390/batteries7040076 - 9 Nov 2021
Cited by 15 | Viewed by 6023
Abstract
In this paper, a method for monitoring SoC of a lithium-ion battery cell through continuous impedance measurement during cell operation is introduced. A multi-sine signal is applied to the cell operating current, and the cell SoH and SoC can be simultaneously monitored via [...] Read more.
In this paper, a method for monitoring SoC of a lithium-ion battery cell through continuous impedance measurement during cell operation is introduced. A multi-sine signal is applied to the cell operating current, and the cell SoH and SoC can be simultaneously monitored via impedance at each frequency. Unlike existing studies in which cell impedance measurement is performed ex situ through EIS equipment, cell state estimation is performed in situ. The measured impedance takes into account cell temperature and cell SoH, enabling accurate SoC estimation. The measurement system configured for the experiment and considerations for the selection of measurement parameters are described, and the accuracy of cell SoC estimation is presented. Full article
(This article belongs to the Special Issue Battery Systems and Energy Storage beyond 2020)
Show Figures

Figure 1

10 pages, 1464 KiB  
Proceeding Paper
Advances in Crest Factor Minimization for Wide-Bandwidth Multi-Sine Signals with Non-Flat Amplitude Spectra
by Helena Althoff, Maximilian Eberhardt, Steffen Geinitz and Christian Linder
Comput. Sci. Math. Forum 2022, 2(1), 11; https://doi.org/10.3390/IOCA2021-10908 - 28 Sep 2021
Cited by 3 | Viewed by 2068
Abstract
Multi-sine excitation signals give spectroscopic insight into fast chemical processes over bandwidths from 101 Hz to 107 Hz. The crest factor (CF) determines the information density of a multi-sine signal. Minimizing the CF yields higher information density and is the goal [...] Read more.
Multi-sine excitation signals give spectroscopic insight into fast chemical processes over bandwidths from 101 Hz to 107 Hz. The crest factor (CF) determines the information density of a multi-sine signal. Minimizing the CF yields higher information density and is the goal of the presented work. Four algorithms and a combination of two of them are presented. The first two algorithms implement different iterative optimizations of the amplitude and phase angle values of the signal. The combined algorithm alternates between the first and second optimization algorithms. Additionally, a simulated annealing approach and a genetic algorithm optimizing the CF were implemented. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Algorithms)
Show Figures

Figure 1

25 pages, 3860 KiB  
Article
A Method for Improved Flight Testing of Remotely Piloted Aircraft Using Multisine Inputs
by Roger Larsson, Alejandro Sobron, David Lundström and Martin Enqvist
Aerospace 2020, 7(9), 135; https://doi.org/10.3390/aerospace7090135 - 10 Sep 2020
Cited by 7 | Viewed by 4275
Abstract
Unless a segregated airspace and the corresponding clearances can be afforded, flight testing of remotely piloted aircraft is often done near the ground and within visual line-of-sight. In addition to the increased exposure to turbulence, this setup also limits the available time for [...] Read more.
Unless a segregated airspace and the corresponding clearances can be afforded, flight testing of remotely piloted aircraft is often done near the ground and within visual line-of-sight. In addition to the increased exposure to turbulence, this setup also limits the available time for test manoeuvres on each pass, especially for subscale demonstrators with a relatively high wing loading and flight speed. A suitable testing procedure, efficient excitation signals and a robust system identification method are therefore fundamental. Here, the authors use ground-based flight control augmentation to inject multisine signals with low correlation between the different inputs. Focusing on initial flight-envelope expansion, where linear regression is common, this paper also describes the improvement of an existing frequency-domain method by using an instrumental variable (IV) approach to better handle turbulence and measurement noise and to enable real-time identification analysis. Both simulations and real flight tests on a subscale demonstrator are presented. The results show that the combination of multisine input signals and the enhanced frequency-domain method is an effective way of improving flight testing of remotely piloted aircraft in confined airspace. Full article
Show Figures

Figure 1

18 pages, 1336 KiB  
Article
Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV
by Piotr Lichota
Aerospace 2020, 7(8), 113; https://doi.org/10.3390/aerospace7080113 - 5 Aug 2020
Cited by 17 | Viewed by 4382
Abstract
Designing a reconfiguration system for an aircraft requires a good mathematical model of the object. An accurate model describing the aircraft dynamics can be obtained from system identification. In this case, special maneuvers for parameter estimation must be designed, as the reconfiguration algorithm [...] Read more.
Designing a reconfiguration system for an aircraft requires a good mathematical model of the object. An accurate model describing the aircraft dynamics can be obtained from system identification. In this case, special maneuvers for parameter estimation must be designed, as the reconfiguration algorithm may require to use flight controls separately, even if they usually work in pairs. The simultaneous multi-axis multi-step input design for reconfigurable fixed-wing aircraft system identification is presented in this paper. D-optimality criterion and genetic algorithm were used to design the flight controls deflections. The aircraft model was excited with those inputs and its outputs were recorded. These data were used to estimate stability and control derivatives by using the maximum likelihood principle. Visual match between registered and identified outputs as well as relative standard deviations were used to validate the outcomes. The system was also excited with simultaneous multisine inputs and its stability and control derivatives were estimated with the same approach as earlier in order to assess the multi-step design. Full article
(This article belongs to the Special Issue Flight Simulation)
Show Figures

Figure 1

25 pages, 2846 KiB  
Article
Identification of Aeroelastic Models for the X-56A Longitudinal Dynamics Using Multisine Inputs and Output Error in the Frequency Domain
by Jared A. Grauer and Matthew J. Boucher
Aerospace 2019, 6(2), 24; https://doi.org/10.3390/aerospace6020024 - 22 Feb 2019
Cited by 23 | Viewed by 7077
Abstract
System identification from measured flight test data was conducted using the X-56A aeroelastic demonstrator to identify a longitudinal flight dynamics model that included the short period, first symmetric wing bending, and first symmetric wing torsion modes. Orthogonal phase-optimized multisines were used to simultaneously [...] Read more.
System identification from measured flight test data was conducted using the X-56A aeroelastic demonstrator to identify a longitudinal flight dynamics model that included the short period, first symmetric wing bending, and first symmetric wing torsion modes. Orthogonal phase-optimized multisines were used to simultaneously excite multiple control effectors while a flight control system was active. Non-dimensional stability and control derivatives parameterizing an aeroelastic model were estimated using the output-error approach to match Fourier transforms of measured output response data. The predictive capability of the identified model was demonstrated using other flight test data with different inputs and at a different flight conditions. Modal characteristics of the identified model were explored and compared with other predictions. Practical aspects of the experiment design and system identification analysis, specific to flexible aircraft, are also discussed. Overall, the approach used was successful for identifying aeroelastic flight dynamics models from flight test data. Full article
(This article belongs to the Special Issue Aeroelasticity)
Show Figures

Figure 1

18 pages, 4015 KiB  
Article
Application of Time-Resolved Multi-Sine Impedance Spectroscopy for Lithium-Ion Battery Characterization
by Hendrik Zappen, Florian Ringbeck and Dirk Uwe Sauer
Batteries 2018, 4(4), 64; https://doi.org/10.3390/batteries4040064 - 5 Dec 2018
Cited by 78 | Viewed by 10945
Abstract
Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for the characterization of electrical, thermal and aging behavior of batteries. In this paper, an EIS measurement technique to acquire impedance spectra with high time resolution is examined, which can be used to gather impedance [...] Read more.
Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for the characterization of electrical, thermal and aging behavior of batteries. In this paper, an EIS measurement technique to acquire impedance spectra with high time resolution is examined, which can be used to gather impedance data during dynamic operating conditions. A theoretical analysis of the used multi-sine excitation signals is performed in detail and a practical measurement system is presented and validated. Afterwards, EIS measurements during the charging process of a lithium-ion battery are performed and discussed. Full article
Show Figures

Figure 1

9 pages, 1016 KiB  
Article
Measuring and Analysis of Nonlinear Characterization of Lithium-Ion Batteries Using Multisin Excitation Signal
by Y. Firouz, N. Omar, S. Goutam, J-M. Timmermans, P. V. den Bossche and J. V. Mierlo
World Electr. Veh. J. 2016, 8(2), 362-370; https://doi.org/10.3390/wevj8020362 - 24 Jun 2016
Cited by 6 | Viewed by 1277
Abstract
This paper introduces a novel methodology for analysis in the frequency domain. This methodology looks to the battery from a different point of view and covers aspects of the battery that is often neglected in other works and analysis battery precisely. Using periodic [...] Read more.
This paper introduces a novel methodology for analysis in the frequency domain. This methodology looks to the battery from a different point of view and covers aspects of the battery that is often neglected in other works and analysis battery precisely. Using periodic signals such as random phase multisine for system identification, allows separating noise and nonlinear distortions from the linear part of the system’s response. In addition to a shorter test time in comparison with conventional single sine EIS, by performing extra periods and different phase realizations, transients are eliminated and noise disturbance and also nonlinear distortion is detected. Full article
Back to TopTop