Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = multiple angular compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 23463 KB  
Article
Cooperative Path-Following Control for Multi-UAVs Considering GNSS Denial
by Jinguang Yue, Kuaikuai Yu, Bo Wang, Donghua Zhao, Tongyu Liu and Chong Shen
Drones 2025, 9(11), 749; https://doi.org/10.3390/drones9110749 - 28 Oct 2025
Cited by 1 | Viewed by 723
Abstract
This paper investigates the cooperative path-following control problem for multiple unmanned aerial vehicles (UAVs) under Global Navigation Satellite System (GNSS) denial conditions. To achieve equidistant distribution and uniform velocity motion within the swarm, a distributed control strategy based on Linear Matrix Inequalities (LMI) [...] Read more.
This paper investigates the cooperative path-following control problem for multiple unmanned aerial vehicles (UAVs) under Global Navigation Satellite System (GNSS) denial conditions. To achieve equidistant distribution and uniform velocity motion within the swarm, a distributed control strategy based on Linear Matrix Inequalities (LMI) is proposed. Additionally, a novel virtual arc-length cooperation strategy is introduced, decomposing the formation maintenance problem into two subtasks: path following and velocity synchronization. This approach reduces control complexity and significantly minimizes frequent velocity cooperation issues caused by angular separation errors. To enable online estimation and compensation for model uncertainties and external disturbances, a USDE is incorporated, offering enhanced adaptability to time-varying disturbances. Simultaneously, a dynamic event-triggered mechanism (ETM) is designed to exchange neighbor information only when necessary, substantially reducing communication load. Global consistent ultimately bounded stability of the closed-loop system is rigorously proven using Lyapunov theory. Finally, validation results from the simulation platform demonstrate the proposed method’s certain feasibility and effectiveness in practical applications. Full article
Show Figures

Figure 1

13 pages, 1454 KB  
Article
Lower Limb Inter-Joint Coordination and End-Point Control During Gait in Adolescents with Early Treated Unilateral Developmental Dysplasia of the Hip
by Chu-Fen Chang, Tung-Wu Lu, Chia-Han Hu, Kuan-Wen Wu, Chien-Chung Kuo and Ting-Ming Wang
Bioengineering 2025, 12(8), 836; https://doi.org/10.3390/bioengineering12080836 - 31 Jul 2025
Cited by 1 | Viewed by 1145
Abstract
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This [...] Read more.
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This study investigated lower limb inter-joint coordination and swing foot control during level walking in adolescents with early-treated unilateral DDH. Methods: Eleven female adolescents treated early for DDH using Pemberton osteotomy were compared with 11 age-matched healthy controls. The joint angles and angular velocities of the hip, knee, and ankle were measured, and the corresponding phase angles and continuous relative phase (CRP) for hip–knee and knee–ankle coordination were obtained. The variability of inter-joint coordination was quantified using the deviation phase values obtained as the time-averaged standard deviations of the CRP curves over multiple trials. Results: The DDH group exhibited a flexed posture with increased variability in knee–ankle coordination of the affected limb throughout the gait cycle compared to the control group. In contrast, the unaffected limb compensated for the kinematic alterations of the affected limb with reduced peak angular velocities but increased knee–ankle CRP over double-limb support and trajectory variability over the swing phase. Conclusions: The identified changes in inter-joint coordination in adolescents with early treated DDH provide a plausible explanation for the previously reported increased GRF loading rates in the unaffected limb, a risk factor of premature OA. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

16 pages, 3007 KB  
Article
Multilayer Neurolearning of Measurement-Information-Poor Hydraulic Robotic Manipulators with Disturbance Compensation
by Guichao Yang and Zhiying Shi
Mathematics 2025, 13(4), 683; https://doi.org/10.3390/math13040683 - 19 Feb 2025
Cited by 1 | Viewed by 799
Abstract
In order to further improve the tracking performance of multiple-degree-of-freedom serial electro-hydraulic robotic manipulators, a high-performance multilayer neurocontroller will be proposed. In detail, multilayer neural networks will be employed to approximate the smooth and non-smooth state-dependent modeling uncertainties. Meanwhile, extended state observers will [...] Read more.
In order to further improve the tracking performance of multiple-degree-of-freedom serial electro-hydraulic robotic manipulators, a high-performance multilayer neurocontroller will be proposed. In detail, multilayer neural networks will be employed to approximate the smooth and non-smooth state-dependent modeling uncertainties. Meanwhile, extended state observers will be utilized to estimate matched and unmatched time-varying disturbances. Moreover, these estimated values will be incorporated into the synthesized controller to compensate for the modeling uncertainties. Significantly, the proposed controller without “explosion of complexity” is suitable for the scene where the joint angular velocities are not measurable. Additionally, the sensor measurement noises can be reduced and input saturation nonlinearity will be handled. Full article
Show Figures

Figure 1

13 pages, 1881 KB  
Article
Research on Inertial Isolation Rotation Modulation of Dual-Axis Inertial Navigation Based on Multi-Error Coupling Characteristics
by Bo Zhang, Changhua Hu, Silin Hou, Jianxun Zhang, Jianfei Zheng and Xuan Liu
Aerospace 2025, 12(1), 47; https://doi.org/10.3390/aerospace12010047 - 13 Jan 2025
Viewed by 1397
Abstract
Currently, research on the rotational modulation of dual-axis inertial navigation for isolated carrier motion does not provide sufficient solutions for the compensation of the gyroscope scale factor error caused by the Earth’s rotation. Moreover, it is primarily applied to ships with low maneuverability [...] Read more.
Currently, research on the rotational modulation of dual-axis inertial navigation for isolated carrier motion does not provide sufficient solutions for the compensation of the gyroscope scale factor error caused by the Earth’s rotation. Moreover, it is primarily applied to ships with low maneuverability and has not yet been implemented in the field of pure inertial guidance weapons. A dual-axis inertial isolation rotation modulation method is proposed to address this issue, taking into account the application characteristics of long-endurance guided weapons. An analysis of the system error characteristics under the coupling of multiple error sources acting on IMU was conducted, and it was found that the angular velocity of the inertial isolation carrier can significantly reduce the output error of the IMU. A dual-axis inertial isolation shaft system installation error compensation algorithm was designed, and an improvement was made based on the traditional sixteen-sequence rotation scheme to compensate for the projection components of the Earth’s rotation and carrier motion on the inner and outer frame rotation axes, achieving the inertial isolation rotation modulation function of dual-axis inertial navigation. Based on the attitude changes in long-range guided weapons, Monte Carlo simulation verification was conducted, and the results showed that this scheme can improve inertial navigation accuracy by 10% to 20%. Full article
Show Figures

Figure 1

14 pages, 692 KB  
Article
Auto Aligning, Error-Compensated Broadband Collimated Transmission Spectroscopy
by Karsten Pink, Alwin Kienle and Florian Foschum
Sensors 2024, 24(21), 6993; https://doi.org/10.3390/s24216993 - 30 Oct 2024
Cited by 6 | Viewed by 947
Abstract
Broadband spectral measurements of the ballistic transmission of scattering samples are challenging. The presented work shows an approach that includes a broadband system and an automated adjustment unit for compensation of angular distortions caused by non-plane-parallel samples. The limits of the system in [...] Read more.
Broadband spectral measurements of the ballistic transmission of scattering samples are challenging. The presented work shows an approach that includes a broadband system and an automated adjustment unit for compensation of angular distortions caused by non-plane-parallel samples. The limits of the system in terms of optimal transmission and detected forward scattering influenced by the scattering phase function are investigated. We built and validated a setup that measures the collimated transmission signal in a spectral range from 300 nm to 2150 nm. The system was validated using polystyrene spheres and Mie calculations. The limits of the system in terms of optimal transmission and detected forward scattering were researched. The optimal working parameters of the system, analyzed by simulations using the Monte Carlo method, show that the transmission should be larger than 10% and less than 90% to allow for a reliable measurement with acceptable errors caused by noise and systematic errors of the system. The optimal transmission range is between 25% and 50%. We show that the phase function is important when considering the accuracy of the measurement. For strongly forward-scattering samples, errors of up to 80% can be observed, even for a very small numerical aperture of 6.6·104, as used in our experimental system. We also show that errors increase with optical thickness as the ballistic transmission decreases and the multiscattered fraction increases. In addition, errors caused by multiple reflections in the sample layer were analyzed and also classified as relevant for classical absorption spectroscopy. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

25 pages, 5361 KB  
Article
Fault Tolerant Control in Underwater Vehicles
by Chang Liu, Vladimir Filaretov, Alexander Zuev, Alexander Protsenko and Alexey Zhirabok
J. Mar. Sci. Eng. 2024, 12(10), 1836; https://doi.org/10.3390/jmse12101836 - 14 Oct 2024
Cited by 5 | Viewed by 1916
Abstract
The article discusses the problem of adaptive system synthesis to provide the detection, estimation, and elimination of the negative consequences of faults in the thrusters of underwater robots and deviations of their parameters. For this purpose, an approach consisting of three stages is [...] Read more.
The article discusses the problem of adaptive system synthesis to provide the detection, estimation, and elimination of the negative consequences of faults in the thrusters of underwater robots and deviations of their parameters. For this purpose, an approach consisting of three stages is proposed. At the first stage, based on a bank of diagnostic observers, deviations of the thruster parameters from their nominal values or the occurrence of errors in the readings of its sensors are detected. At the second stage, the magnitudes of the detected deviations and errors are estimated using sliding mode observers. To estimate not only single but also multiple faults, the additional sliding mode observers are used. At the third stage, a control signal is generated to retain the basic dynamic properties of the thruster based on the estimated magnitudes of deviations and errors. Thus, the main contribution of this paper is designing the systems compensating for the consequences of faults occurring in the thrusters of the UR and errors in the readings of the angular velocity sensors. This avoids reducing the accuracy of movement along specified trajectories, as well as preventing accidents that could lead to the loss of the vehicle. The operability and efficiency of the proposed systems were tested using computer simulations and experimental studies on an electro-mechanical stand. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles: Perception, Planning, Control and Swarm)
Show Figures

Figure 1

21 pages, 7260 KB  
Article
Path Tracking for Electric Mining Articulated Vehicles Based on Nonlinear Compensated Multiple Reference Points Linear MPC
by Guoxing Bai, Shaochong Liu, Bining Zhou, Jianxiu Huang, Yan Zheng and Elxat Elham
World Electr. Veh. J. 2024, 15(9), 427; https://doi.org/10.3390/wevj15090427 - 20 Sep 2024
Cited by 3 | Viewed by 1612
Abstract
The path tracking control of electric mining articulated vehicles (EMAVs), critical equipment commonly used for mining and transportation in underground mines, is a research topic that has received much attention. The path tracking control of EMAVs is subject to several system constraints, including [...] Read more.
The path tracking control of electric mining articulated vehicles (EMAVs), critical equipment commonly used for mining and transportation in underground mines, is a research topic that has received much attention. The path tracking control of EMAVs is subject to several system constraints, including articulation angle and articulation angular velocity. In light of this, many researchers have initiated studies based on model predictive control (MPC). The principal design schemes for existing MPC methods encompass linear MPC (LMPC) utilizing a single reference point, so named the single reference point LMPC (SRP-LMPC), and nonlinear MPC (NMPC). However, NMPC exhibits suboptimal real-time performance, while SRP-LMPC demonstrates inferior accuracy. To simultaneously improve the accuracy and real-time performance of the path tracking control of EMAV, based on the SRP-LMPC, a path tracking control method for EMAV based on nonlinear compensated multiple reference points LMPC (MRP-LMPC) is proposed. The simulation results demonstrate that MRP-LMPC simultaneously exhibits a commendable degree of accuracy and real-time performance. In all simulation results, the displacement error amplitude and heading error amplitude of MRP-LMPC do not exceed 0.2675 m and 0.1108 rad, respectively. Additionally, the maximum solution time in each control period is 5.9580 ms. The accuracy of MRP-LMPC is comparable to that of NMPC. However, the maximum solution time of MRP-LMPC can be reduced by over 27.81% relative to that of NMPC. Furthermore, the accuracy of MRP-LMPC is significantly superior to that of SRP-LMPC. The maximum displacement and heading error amplitude can be reduced by 0.3075 m and 0.1003 rad, respectively, representing a reduction of 65.51% and 73.59% in the middle speed and above scenario. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

34 pages, 5375 KB  
Article
Advancing mmWave Altimetry for Unmanned Aerial Systems: A Signal Processing Framework for Optimized Waveform Design
by Maaz Ali Awan, Yaser Dalveren, Ali Kara and Mohammad Derawi
Drones 2024, 8(9), 440; https://doi.org/10.3390/drones8090440 - 28 Aug 2024
Cited by 2 | Viewed by 2706
Abstract
This research advances millimeter-wave (mmWave) altimetry for unmanned aerial systems (UASs) by optimizing performance metrics within the constraints of inexpensive automotive radars. Leveraging the software-defined architecture, this study encompasses the intricacies of frequency modulated continuous waveform (FMCW) design for three distinct stages of [...] Read more.
This research advances millimeter-wave (mmWave) altimetry for unmanned aerial systems (UASs) by optimizing performance metrics within the constraints of inexpensive automotive radars. Leveraging the software-defined architecture, this study encompasses the intricacies of frequency modulated continuous waveform (FMCW) design for three distinct stages of UAS flight: cruise, landing approach, and touchdown within a signal processing framework. Angle of arrival (AoA) estimation, traditionally employed in terrain mapping applications, is largely unexplored for UAS radar altimeters (RAs). Time-division multiplexing multiple input–multiple output (TDM-MIMO) is an efficient method for enhancing angular resolution without compromising the size, weight, and power (SWaP) characteristics. Accordingly, this work argues the potential of AoA estimation using TDM-MIMO to augment situational awareness in challenging landing scenarios. To this end, two corner cases comprising landing a small-sized drone on a platform in the middle of a water body are included. Likewise, for the touchdown stage, an improvised rendition of zoom fast Fourier transform (ZFFT) is investigated to achieve millimeter (mm)-level range accuracy. Aptly, it is proposed that a mm-level accurate RA may be exploited as a software redundancy for the critical weight-on-wheels (WoW) system in fixed-wing commercial UASs. Each stage is simulated as a radar scenario using the specifications of automotive radar operating in the 77–81 GHz band to optimize waveform design, setting the stage for field verification. This article addresses challenges arising from radial velocity due to UAS descent rates and terrain variation through theoretical and mathematical approaches for characterization and mandatory compensation. While constant false alarm rate (CFAR) algorithms have been reported for ground detection, a comparison of their variants within the scope UAS altimetry is limited. This study appraises popular CFAR variants to achieve optimized ground detection performance. The authors advocate for dedicated minimum operational performance standards (MOPS) for UAS RAs. Lastly, this body of work identifies potential challenges, proposes solutions, and outlines future research directions. Full article
Show Figures

Figure 1

20 pages, 3462 KB  
Article
Error Compensation Method for Pedestrian Navigation System Based on Low-Cost Inertial Sensor Array
by Lijia Cao, Xiao Luo, Lei Liu, Guoqing Wang and Jie Zhou
Sensors 2024, 24(7), 2234; https://doi.org/10.3390/s24072234 - 30 Mar 2024
Cited by 4 | Viewed by 2725
Abstract
In the pedestrian navigation system, researchers have reduced measurement errors and improved system navigation performance by fusing measurements from multiple low-cost inertial measurement unit (IMU) arrays. Unfortunately, the current data fusion methods for inertial sensor arrays ignore the system error compensation of individual [...] Read more.
In the pedestrian navigation system, researchers have reduced measurement errors and improved system navigation performance by fusing measurements from multiple low-cost inertial measurement unit (IMU) arrays. Unfortunately, the current data fusion methods for inertial sensor arrays ignore the system error compensation of individual IMUs and the correction of position information in the zero-velocity interval. Therefore, these methods cannot effectively reduce errors and improve accuracy. An error compensation method for pedestrian navigation systems based on a low-cost array of IMUs is proposed in this paper. The calibration method for multiple location-free IMUs is improved by using a sliding variance detector to segment the angular velocity magnitude into stationary and motion intervals, and each IMU is calibrated independently. Compensation is then applied to the velocity residuals in the zero-velocity interval after zero-velocity update (ZUPT). The experimental results show a significant improvement in the average noise performance of the calibrated IMU array, with a 3.01-fold increase in static noise performance. In the closed-loop walking experiment, the average horizontal position error of a single calibrated IMU is reduced by 27.52% compared to the uncalibrated IMU, while the calibrated IMU array shows a 2.98-fold reduction in average horizontal position error compared to a single calibrated IMU. After compensating for residual velocity, the average horizontal position error of a single IMU is reduced by 0.73 m, while that of the IMU array is reduced by 64.52%. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 5019 KB  
Article
Robust Path-Following Control for AUV under Multiple Uncertainties and Input Saturation
by Jianming Miao, Xingyu Sun, Qichao Chen, Haosu Zhang, Wenchao Liu and Yanyun Wang
Drones 2023, 7(11), 665; https://doi.org/10.3390/drones7110665 - 8 Nov 2023
Cited by 12 | Viewed by 3419
Abstract
In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. [...] Read more.
In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. Firstly, the control laws are constructed based on the traditional backstepping method; the multiple uncertainties are treated as lumped uncertainties, which can be estimated and eliminated by the employed extended state observers (ESOs). In addition, the influence of input saturation can be compensated by the designed auxiliary dynamic compensators. Secondly, to simplify controller design and address the “complexity explosion”, two command filters are used to obtain the estimated value of the unknown sideslip angular velocity and the desired yaw angular acceleration, respectively. Finally, the superiority and robustness of the proposed control strategy are verified through computer simulation. A semi-physical simulation experiment platform is built based on the NI Compact cRIO-9068 and PLC S7-1200 to further demonstrate the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

16 pages, 6024 KB  
Article
Using DWS Optical Readout to Improve the Sensitivity of Torsion Pendulum
by Shaoxin Wang, Heshan Liu, Lei Dai, Ziren Luo, Peng Xu, Pan Li, Ruihong Gao, Dayu Li and Keqi Qi
Sensors 2023, 23(19), 8087; https://doi.org/10.3390/s23198087 - 26 Sep 2023
Cited by 4 | Viewed by 2698
Abstract
In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force [...] Read more.
In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force noises. A hybrid apparatus was designed and analyzed based on the traditional torsion pendulum, and a technique for enhancing the sensitivity of the torsion pendulum system by employing the differential wavefront sensing (DWS) optical readout was proposed. The readout resolution experiment was then carried out on an optical bench that was designed and established. The results indicate that the angular resolution of the DWS signal in optical readout mode can reach the level of 10 nrad/Hz1/2 over the full measurement band. Compared with the autocollimator, the sensitivity of the torsional pendulum is noticeably improved, and the background noise is expected to reach 4.5 × 10−15 Nm/Hz1/2@10 mHz. This method could also be applied to future upgrades of similar systems. Full article
(This article belongs to the Special Issue Recent Advance of Optical Measurement Based on Sensors)
Show Figures

Figure 1

20 pages, 7275 KB  
Article
Suppression of Mainlobe Jammers with Quadratic Element Pulse Coding in MIMO Radar
by Yiqun Zhang, Guisheng Liao, Lan Lan, Jingwei Xu and Xuepan Zhang
Remote Sens. 2023, 15(12), 3202; https://doi.org/10.3390/rs15123202 - 20 Jun 2023
Cited by 5 | Viewed by 1926
Abstract
The problem of suppressing mainlobe deceptive jammers, which spoof radar systems by generating multiple false targets, has attracted widespread attention. To tackle this problem, in this paper, the multiple-input multiple-output (MIMO) radar system was utilized by applying a quadratic element phase code (QEPC) [...] Read more.
The problem of suppressing mainlobe deceptive jammers, which spoof radar systems by generating multiple false targets, has attracted widespread attention. To tackle this problem, in this paper, the multiple-input multiple-output (MIMO) radar system was utilized by applying a quadratic element phase code (QEPC) to the transmitted pulses of different elements. In the receiver, by utilizing the spatial frequency and Doppler frequency offset generated after decoding, the jammers were equivalently distributed in the sidelobes of the joint Doppler-transmit-receive domain and were distinguishable from the true target. Then, further spatial frequency compensation and Doppler compensation were performed to align the true target to the zero point in the transmit spatial and Doppler domains. Moreover, by designing appropriate coding coefficients, the jammers were suppressed by data-independent Doppler-transmit-receive three-dimensional beamforming. However, the beamforming performance was sensitive to angular estimation mismatches, resulting in performance degradation of jammer suppression. To this end, a center-boundary null-broadening control (CBNBC) approach was used to broaden the nulls in the equivalent beampattern by generating multiple artificial jammers with preset powers around the nulls. Thus, the false targets (FTs) with deviations were sufficiently suppressed in the broadened notches. Numerical simulations and theoretical analysis demonstrated the performance of the developed jammer suppression method. Full article
Show Figures

Figure 1

18 pages, 2894 KB  
Article
OMC-SLIO: Online Multiple Calibrations Spinning LiDAR Inertial Odometry
by Shuang Wang, Hua Zhang and Guijin Wang
Sensors 2023, 23(1), 248; https://doi.org/10.3390/s23010248 - 26 Dec 2022
Cited by 7 | Viewed by 4172
Abstract
Light detection and ranging (LiDAR) is often combined with an inertial measurement unit (IMU) to get the LiDAR inertial odometry (LIO) for robot localization and mapping. In order to apply LIO efficiently and non-specialistically, self-calibration LIO is a hot research topic in the [...] Read more.
Light detection and ranging (LiDAR) is often combined with an inertial measurement unit (IMU) to get the LiDAR inertial odometry (LIO) for robot localization and mapping. In order to apply LIO efficiently and non-specialistically, self-calibration LIO is a hot research topic in the related community. Spinning LiDAR (SLiDAR), which uses an additional rotating mechanism to spin a common LiDAR and scan the surrounding environment, achieves a large field of view (FoV) with low cost. Unlike common LiDAR, in addition to the calibration between the IMU and the LiDAR, the self-calibration odometer for SLiDAR must also consider the mechanism calibration between the rotating mechanism and the LiDAR. However, existing self-calibration LIO methods require the LiDAR to be rigidly attached to the IMU and do not take the mechanism calibration into account, which cannot be applied to the SLiDAR. In this paper, we propose firstly a novel self-calibration odometry scheme for SLiDAR, named the online multiple calibration inertial odometer (OMC-SLIO) method, which allows online estimation of multiple extrinsic parameters among the LiDAR, rotating mechanism and IMU, as well as the odometer state. Specially, considering that the rotating and static parts of the motor encoder inside the SLiDAR are rigidly connected to the LiDAR and IMU respectively, we formulate the calibration within the SLiDAR as two separate sets of calibrations: the mechanism calibration between the LiDAR and the rotating part of the motor encoder and the sensor calibration between the static part of the motor encoder and the IMU. Based on such a SLiDAR calibration formulation, we can construct a well-defined kinematic model from the LiDAR to the IMU with the angular information from the motor encoder. Based on the kinematic model, a two-stage motion compensation method is presented to eliminate the point cloud distortion resulting from LiDAR spinning and platform motion. Furthermore, the mechanism and sensor calibration as well as the odometer state are wrapped in a measurement model and estimated via an error-state iterative extended Kalman filter (ESIEKF). Experimental results show that our OMC-SLIO is effective and attains excellent performance. Full article
Show Figures

Figure 1

13 pages, 3790 KB  
Article
Disturbance-Observer-Based Dual-Position Feedback Controller for Precision Control of an Industrial Robot Arm
by Namhyun Kim, Daejin Oh, Jun-Young Oh and Wonkyun Lee
Actuators 2022, 11(12), 375; https://doi.org/10.3390/act11120375 - 14 Dec 2022
Cited by 3 | Viewed by 4105
Abstract
Recently, the fourth industrial revolution has accelerated the application of multiple degrees-of-freedom (DOF) robot arms in various applications. However, it is difficult to utilize robot arms for precision motion control because of their low stiffness. External loads applied to robot arms induce deflections [...] Read more.
Recently, the fourth industrial revolution has accelerated the application of multiple degrees-of-freedom (DOF) robot arms in various applications. However, it is difficult to utilize robot arms for precision motion control because of their low stiffness. External loads applied to robot arms induce deflections in the joints and links, which deteriorates the positioning accuracy. To solve this problem, control methods using a disturbance observer (DOB) with an external sensory system have been developed. However, external sensors are expensive and have low reliability because of noise and reliance on the surrounding environment. A disturbance-observer-based dual-position feedback (DOB-DPF) controller is proposed herein to improve the positioning accuracy by compensating for the deflections in real time using only an internal sensor. The DOB was designed to derive the unpredictable disturbance torque applied to each joint using the command voltage generated by the position controller. The angular deflection of each joint was calculated based on the disturbance torque and joint stiffness, which were identified experimentally. The DPF controller was designed to control the joint motor while simultaneously compensating for angular deflection. A five-DOF robot arm testbed with a position controller was constructed to verify the proposed controller. The contouring performance of the DOB-DPF controller was compared with that of a conventional position controller with an external load applied to the end effector. The increases in the root mean square values of the contour errors were 1.71 and 0.12 mm with a conventional position controller and the proposed DOB-DPF controller, respectively, after a 2.2 kg weight was applied to the end effector. The results show that the contour error caused by the external load is effectively compensated for by the DOB-DPF controller without an external sensor. Full article
(This article belongs to the Special Issue Modeling, Optimization and Control of Robotic Systems)
Show Figures

Figure 1

18 pages, 5367 KB  
Article
Micro-Motion Parameter Extraction of Multi-Scattering-Point Target Based on Vortex Electromagnetic Wave Radar
by Lijun Bu, Yongzhong Zhu, Yijun Chen, Xiaoou Song, Yufei Yang and Yadan Zang
Remote Sens. 2022, 14(23), 5908; https://doi.org/10.3390/rs14235908 - 22 Nov 2022
Cited by 11 | Viewed by 2738
Abstract
In addition to traditional linear Doppler shift, the angular Doppler shift in vortex electromagnetic wave (VEMW) radar systems carrying orbital angular momentum (OAM) can provide more accurate target identification micro-motion parameters, especially the detailed features perpendicular to the radar line-of-sight (LOS) direction. In [...] Read more.
In addition to traditional linear Doppler shift, the angular Doppler shift in vortex electromagnetic wave (VEMW) radar systems carrying orbital angular momentum (OAM) can provide more accurate target identification micro-motion parameters, especially the detailed features perpendicular to the radar line-of-sight (LOS) direction. In this paper, a micro-motion feature extraction method for a spinning target with multiple scattering points based on VEMW radar is proposed. First, a multi-scattering-point spinning target detection model using vortex radar is established, and the mathematical mechanism of echo signal flash shift in time-frequency (TF) domain is deduced. Then, linear Doppler shift is eliminated by interference processing with opposite dual-mode VEMW. Subsequently, the shift in TF flicker is focused on the reference zero frequency by the iterative phase compensation method, and the number of scattering points is estimated according to the focusing effect. After this, through the constructed compensation phase, the angular Doppler shift is separated, then the angular velocity, rotation radiusand initial phase of the target are estimated. Theoretical and simulation results verify the effectiveness of the proposed method, and more accurate rotation parameters can be obtained in the case of multiple scattering points using the VEMW radar system. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis)
Show Figures

Figure 1

Back to TopTop