Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = multipath AODV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6184 KiB  
Article
MANET Routing Protocols’ Performance Assessment Under Dynamic Network Conditions
by Ibrahim Mohsen Selim, Naglaa Sayed Abdelrehem, Walaa M. Alayed, Hesham M. Elbadawy and Rowayda A. Sadek
Appl. Sci. 2025, 15(6), 2891; https://doi.org/10.3390/app15062891 - 7 Mar 2025
Viewed by 2588
Abstract
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for [...] Read more.
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for efficient and effective routing. This study evaluates the performance of eight MANET routing protocols: Optimized Link State Routing (OLSR), Destination-Sequenced Distance Vector (DSDV), Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), Ad Hoc On-Demand Multipath Distance Vector (AOMDV), Temporally Ordered Routing Algorithm (TORA), Zone Routing Protocol (ZRP), and Geographic Routing Protocol (GRP). Using a custom simulation environment in OMNeT++ 6.0.1 with INET-4.5.0, the protocols were tested under four scenarios with varying node densities (20, 80, 200, and 500 nodes). The simulations utilized the Random Waypoint Mobility model to mimic dynamic node movement and evaluated key performance metrics, including network load, throughput, delay, energy consumption, jitter, packet loss rate, and packet delivery ratio. The results reveal that proactive protocols like OLSR are ideal for stable, low-density environments, while reactive protocols such as AOMDV and TORA excel in dynamic, high-mobility scenarios. Hybrid protocols, particularly GRP, demonstrate a balanced approach; achieving superior overall performance with up to 30% lower energy consumption and higher packet delivery ratios compared to reactive protocols. These findings provide practical insights into the optimal selection and deployment of MANET routing protocols for diverse applications, emphasizing the potential of hybrid protocols for modern networks like IoT and emergency response systems. Full article
(This article belongs to the Special Issue Applications of Wireless and Mobile Communications)
Show Figures

Figure 1

19 pages, 4855 KiB  
Article
Routing Protocol for Intelligent Unmanned Cluster Network Based on Node Energy Consumption and Mobility Optimization
by He Dong, Baoguo Yu and Wanqing Wu
Sensors 2025, 25(2), 500; https://doi.org/10.3390/s25020500 - 16 Jan 2025
Viewed by 909
Abstract
Intelligent unmanned clusters have played a crucial role in military reconnaissance, disaster rescue, border patrol, and other domains. Nevertheless, due to factors such as multipath propagation, electromagnetic interference, and frequency band congestion in high dynamic scenarios, unmanned cluster networks experience frequent topology changes [...] Read more.
Intelligent unmanned clusters have played a crucial role in military reconnaissance, disaster rescue, border patrol, and other domains. Nevertheless, due to factors such as multipath propagation, electromagnetic interference, and frequency band congestion in high dynamic scenarios, unmanned cluster networks experience frequent topology changes and severe spectrum limitations, which hinder the provision of connected, elastic and autonomous network support for data interaction among unmanned aerial vehicle (UAV) nodes. To address the conflict between the demand for reliable data transmission and the limited network resources, this paper proposes an AODV routing protocol based on node energy consumption and mobility optimization (AODV-EM) from the perspective of network routing protocols. This protocol introduces two routing metrics: node energy based on node degree balancing and relative node mobility, to comprehensively account for both the balance of network node load and the stability of network links. The experimental results demonstrate that the AODV-EM protocol exhibits better performance compared to traditional AODV protocol in unmanned cluster networks with dense node distribution and high mobility, which not only improves the efficiency of data transmission, but also ensures the reliability and stability of data transmission. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 627 KiB  
Article
Enhancing Reliability and Stability of BLE Mesh Networks: A Multipath Optimized AODV Approach
by Muhammad Rizwan Ghori, Tat-Chee Wan, Gian Chand Sodhy, Mohammad Aljaidi, Amna Rizwan, Ali Safaa Sadiq and Omprakash Kaiwartya
Sensors 2024, 24(18), 5901; https://doi.org/10.3390/s24185901 - 11 Sep 2024
Cited by 2 | Viewed by 1722
Abstract
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet [...] Read more.
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

15 pages, 1082 KiB  
Article
Arithmetic Optimization AOMDV Routing Protocol for FANETs
by Huamin Wang, Yongfu Li, Yubing Zhang, Tiancong Huang and Yang Jiang
Sensors 2023, 23(17), 7550; https://doi.org/10.3390/s23177550 - 31 Aug 2023
Cited by 10 | Viewed by 2329
Abstract
Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have [...] Read more.
Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have the characteristics of faster network topology changes and limited energy. Existing reactive routing protocols are unsuitable for the highly dynamic and limited energy of FANETs. For the lithium battery-powered UAV, flight endurance lasts from half an hour to two hours. The fast-moving UAV not only affects the packet delivery rate, average throughput, and end-to-end delay but also shortens the flight endurance. Therefore, research is urgently needed into a high-performance routing protocol with high energy efficiency. In this paper, we propose a novel routing protocol called AO-AOMDV, which utilizes arithmetic optimization (AO) to enhance the ad hoc on-demand multi-path distance vector (AOMDV) routing protocol. The AO-AOMDV utilizes a fitness function to calculate the fitness value of multiple paths and employs arithmetic optimization for selecting the optimal route for routing selection. Our experiments were conducted using NS3 with three evaluation metrics: the packet delivery ratio, network lifetime, and average end-to-end delay. We compare this algorithm to routing protocols including AOMDV and AODV. The results indicate that the proposed AO-AOMDV attained a higher packet delivery ratio, network lifetime, and lower average end-to-end delay. Full article
(This article belongs to the Special Issue UAV Based Wireless Sensor Networks in Smart Cities)
Show Figures

Figure 1

21 pages, 3101 KiB  
Article
A Reliable Low-Latency Multipath Routing Algorithm for Urban Rail Transit Ad Hoc Networks
by Lei Suo, Liu Liu, Zhaoyang Su, Shiyuan Cai, Zijie Han, Haitao Han and Feng Bao
Sensors 2023, 23(12), 5576; https://doi.org/10.3390/s23125576 - 14 Jun 2023
Cited by 4 | Viewed by 1938
Abstract
With the advancement of urban rail transit towards intelligence, the demand for urban rail transit communication has increased significantly, but the traditional urban rail transit vehicle–ground communication system has been unable to meet the future vehicle–ground communication requirements. To improve the performance of [...] Read more.
With the advancement of urban rail transit towards intelligence, the demand for urban rail transit communication has increased significantly, but the traditional urban rail transit vehicle–ground communication system has been unable to meet the future vehicle–ground communication requirements. To improve the performance of vehicle–ground communication, the paper proposes a reliable low-latency multipath routing (RLLMR) algorithm for urban rail transit ad hoc networks. First, RLLMR combines the characteristics of urban rail transit ad hoc networks and uses node location information to configure a proactive multipath to reduce route discovery delay. Second, the number of transmission paths is adaptively adjusted according to the quality of service (QoS) requirements for vehicle–ground communication, and then the optimal path is selected based on the link cost function to improve transmission quality. Third, in order to enhance the reliability of communication, a routing maintenance scheme has been added, and the static node-based local repair scheme is used in routing maintenance to reduce the maintenance cost and time. The simulation results show that compared with traditional AODV and AOMDV protocols, the proposed RLLMR algorithm has good performance in improving latency and is slightly inferior to the AOMDV protocol in improving reliability. However, overall, the throughput of the RLLMR algorithm is better than that of the AOMDV. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 1526 KiB  
Article
Wireless Body Area Routing Protocols Impact Analysis on Entity Mobility Models with Static Sink Node
by Sunny Singh, Devendra Prasad, Shalli Rani, Aman Singh, Fahd S. Alharithi and Jasem Almotiri
Appl. Sci. 2022, 12(11), 5655; https://doi.org/10.3390/app12115655 - 2 Jun 2022
Cited by 5 | Viewed by 2449
Abstract
The most important and emerging characteristic of Wireless Body Area Networks (WBANs), which differentiates them from other wired and wireless area networks, is mobility. Therefore, the routing protocols for WBAN are designed in such a way that they can deal with dynamic changes [...] Read more.
The most important and emerging characteristic of Wireless Body Area Networks (WBANs), which differentiates them from other wired and wireless area networks, is mobility. Therefore, the routing protocols for WBAN are designed in such a way that they can deal with dynamic changes in topology and provide maximum throughput, packet delivery ratio, average end-to-end delay, and minimum energy consumption. Thus, achieving optimal values for every performance parameter becomes a big challenge. This work investigates the performance of three separate path discovery protocols, such as Destination-Sequenced Distance-Vector Routing (DSDV), Ad Hoc On-demand Distance Vector (AODV), and Ad Hoc On-demand Multipath Distance Vector Routing protocol (AOMDV), for two different mobility models with a fixed-positioned sink. During experimentation, the AOMDV routing protocol achieves a high packet delivery ratio (PDR), average end-to-end delay, and throughput as compared to other routing protocols. Full article
Show Figures

Figure 1

21 pages, 3934 KiB  
Communication
Energy Efficient Routing Protocol in Sensor Networks Using Genetic Algorithm
by Jatinkumar Patel and Hosam El-Ocla
Sensors 2021, 21(21), 7060; https://doi.org/10.3390/s21217060 - 25 Oct 2021
Cited by 27 | Viewed by 3676
Abstract
In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the [...] Read more.
In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the energy consumption in their nodes. We compare this algorithm with other existing ad hoc routing protocols including LEACH-GA, GA-AODV, AODV, DSR, EPAR, EBAR_BFS. Results prove that our protocol enhances the network performance in terms of packet delivery ratio, throughput, round trip time and energy consumption. GA-AOMDV protocol achieves average gain that is 7 to 22% over other protocols. Therefore, our protocol extends the network lifetime for data communications. Full article
(This article belongs to the Special Issue Distributed Algorithms for Wireless Sensor Networks)
Show Figures

Figure 1

25 pages, 706 KiB  
Article
Optimization of the AODV-Based Packet Forwarding Mechanism for BLE Mesh Networks
by Muhammad Rizwan Ghori, Tat-Chee Wan, Gian Chand Sodhy and Amna Rizwan
Electronics 2021, 10(18), 2274; https://doi.org/10.3390/electronics10182274 - 16 Sep 2021
Cited by 9 | Viewed by 4183
Abstract
The standard Bluetooth Low-Energy mesh networks assume the use of flooding for multihop communications. The flooding approach causes network overheads and delays due to continuous message broadcasting in the absence of a routing mechanism. Among the routing protocols, AODV is one of the [...] Read more.
The standard Bluetooth Low-Energy mesh networks assume the use of flooding for multihop communications. The flooding approach causes network overheads and delays due to continuous message broadcasting in the absence of a routing mechanism. Among the routing protocols, AODV is one of the most popular and robust routing protocol for wireless ad hoc networks. In this paper, we optimized the AODV protocol for Bluetooth Low-Energy communication to make it more efficient in comparison to the mesh protocol. With the proposed protocol (Optimized AODV (O-AODV)), we were able to achieve lower overheads, end-to-end delay, and average per-hop one-way delay in comparison to the BLE mesh (flooding) protocol and AODV protocol for all three scenarios (linear topology with ten nodes, multipath topology with six and ten nodes). In addition, the proposed protocol exhibited practically constant route requests and route reply setup times. Furthermore, the proposed protocol demonstrated a better Packet Delivery Ratio (PDR) for O-AODV (84%) in comparison to AODV (71%), but lower than the PDR of the mesh (flooding) protocol with 93%. Full article
(This article belongs to the Special Issue Emerging Technologies in Industrial Communication II)
Show Figures

Figure 1

18 pages, 1125 KiB  
Article
A Network Architecture and Routing Protocol for the MEDIcal WARNing System
by Luca Leonardi, Lucia Lo Bello, Gaetano Patti and Orazio Ragusa
J. Sens. Actuator Netw. 2021, 10(3), 44; https://doi.org/10.3390/jsan10030044 - 30 Jun 2021
Cited by 9 | Viewed by 3991
Abstract
The MEDIcal WARNing (MEDIWARN) system continuously and automatically monitors the vital parameters of pre-intensive care hospitalized patients and, thanks to an intelligent processing system, provides the medical teams with a better understanding of their patients’ clinical condition, thus enabling a prompt reaction to [...] Read more.
The MEDIcal WARNing (MEDIWARN) system continuously and automatically monitors the vital parameters of pre-intensive care hospitalized patients and, thanks to an intelligent processing system, provides the medical teams with a better understanding of their patients’ clinical condition, thus enabling a prompt reaction to any change. Since the hospital units generally lack a wired infrastructure, a wireless network is required to collect sensor data in a server for processing purposes. This work presents the MEDIWARN communication system, addressing both the network architecture and a simple, lightweight and configurable routing protocol that fits the system requirements, such as the ability to offer path redundancy and mobility support without significantly increasing the network workload and latency. The novel protocol, called the MultiPath Routing Protocol for MEDIWARN (MP-RPM), was therefore designed as a solution to support low-latency reliable transmissions on a dynamic network while limiting the network overhead due to the control messages. The paper describes the MEDIWARN communication system and addresses the experimental performance evaluation of an implementation in a real use-case scenario. Moreover, the work discusses a simulative assessment of the MEDIWARN communication system performance obtained using different routing protocols. In particular, the timeliness and reliability results obtained by the MP-RPM routing protocol are compared with those obtained by two widely adopted routing protocols, i.e., the Ad-hoc On-demand Distance Vector (AODV) and the Destination-Sequenced Distance-Vector Routing (DSDV). Full article
Show Figures

Figure 1

20 pages, 11315 KiB  
Article
Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique
by Rakesh Kumar Sahu and Narendra S. Chaudhari
Electronics 2018, 7(5), 56; https://doi.org/10.3390/electronics7050056 - 25 Apr 2018
Cited by 16 | Viewed by 6690
Abstract
In Mobile Ad-hoc networks (MANET), power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation [...] Read more.
In Mobile Ad-hoc networks (MANET), power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER) is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV), Ad hoc on demand multipath distance vector routing protocol life maximization (AOMR-LM) and Source routing-based multicast protocol (SRMP) algorithms. Hence, the AOMDV-ER algorithm performs better than these recently developed algorithms. Full article
Show Figures

Figure 1

15 pages, 4966 KiB  
Article
LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring
by Chinyang Henry Tseng
Int. J. Environ. Res. Public Health 2016, 13(6), 547; https://doi.org/10.3390/ijerph13060547 - 31 May 2016
Cited by 3 | Viewed by 4401
Abstract
In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend [...] Read more.
In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee’s routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node’s distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee’s AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV. Full article
Show Figures

Figure 1

21 pages, 8355 KiB  
Article
Enhanced Secure Trusted AODV (ESTA) Protocol to Mitigate Blackhole Attack in Mobile Ad Hoc Networks
by Dilraj Singh and Amardeep Singh
Future Internet 2015, 7(3), 342-362; https://doi.org/10.3390/fi7030342 - 23 Sep 2015
Cited by 7 | Viewed by 6255
Abstract
The self-organizing nature of the Mobile Ad hoc Networks (MANETs) provide a communication channel anywhere, anytime without any pre-existing network infrastructure. However, it is exposed to various vulnerabilities that may be exploited by the malicious nodes. One such malicious behavior is introduced by [...] Read more.
The self-organizing nature of the Mobile Ad hoc Networks (MANETs) provide a communication channel anywhere, anytime without any pre-existing network infrastructure. However, it is exposed to various vulnerabilities that may be exploited by the malicious nodes. One such malicious behavior is introduced by blackhole nodes, which can be easily introduced in the network and, in turn, such nodes try to crumble the working of the network by dropping the maximum data under transmission. In this paper, a new protocol is proposed which is based on the widely used Ad hoc On-Demand Distance Vector (AODV) protocol, Enhanced Secure Trusted AODV (ESTA), which makes use of multiple paths along with use of trust and asymmetric cryptography to ensure data security. The results, based on NS-3 simulation, reveal that the proposed protocol is effectively able to counter the blackhole nodes in three different scenarios. Full article
Show Figures

Figure 1

24 pages, 321 KiB  
Article
WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs
by Ali Tufail, Arslan Qamar, Adil Mehmood Khan, Waleed Akram Baig and Ki-Hyung Kim
Sensors 2013, 13(5), 6295-6318; https://doi.org/10.3390/s130506295 - 13 May 2013
Cited by 9 | Viewed by 7694
Abstract
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes [...] Read more.
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Back to TopTop