Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = multimode optomechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1972 KB  
Communication
Intensity Modulation of Two Weakly Coupled Stimulated Oscillating Mechanical Modes in an Optomechanical Microbubble Resonator
by Xiayuqi Yu, Lei Xu and Liying Liu
Photonics 2023, 10(4), 365; https://doi.org/10.3390/photonics10040365 - 24 Mar 2023
Cited by 1 | Viewed by 2074
Abstract
We report that when two stimulating mechanical modes in an optomechanical microbubble resonator are weakly coupled to each other, strong oscillation intensity modulation occurs. The modulation was theoretically expected and experimentally observed. We theoretically derived the expressions of the coupling coefficient between the [...] Read more.
We report that when two stimulating mechanical modes in an optomechanical microbubble resonator are weakly coupled to each other, strong oscillation intensity modulation occurs. The modulation was theoretically expected and experimentally observed. We theoretically derived the expressions of the coupling coefficient between the mechanical modes and calculated the region where weak coupling happens. We found that weak coupling exists when the optical quality factor of the microcavity is high and the detuning of the pump laser is close to the beat frequency of the two mechanical modes. Experimentally, we observed that when two mechanical modes are both in stimulated oscillation, they undergo strong intensity modulation as the optical pump power changes, and the coupling coefficient of the two modes is estimated to be 0.962 at the pump power when one mode is in the stimulated region and the other mode is at a stimulating threshold; this proves that the two mechanical modes are weakly coupled. Our results extended the weak coupling conclusion in multimode laser emission to stimulated oscillation in multiple mechanical modes. Full article
(This article belongs to the Special Issue Micro-Nano Optical Devices)
Show Figures

Figure 1

11 pages, 2592 KB  
Article
Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics
by Ning Wu, Kaiyu Cui, Xue Feng, Fang Liu, Wei Zhang and Yidong Huang
Photonics 2022, 9(2), 78; https://doi.org/10.3390/photonics9020078 - 29 Jan 2022
Cited by 8 | Viewed by 4005
Abstract
Multimode optomechanics exhibiting several intriguing phenomena, such as coherent wavelength conversion, optomechanical synchronization, and mechanical entanglements, has garnered considerable research interest for realizing a new generation of information processing devices and exploring macroscopic quantum effect. In this study, we proposed and designed a [...] Read more.
Multimode optomechanics exhibiting several intriguing phenomena, such as coherent wavelength conversion, optomechanical synchronization, and mechanical entanglements, has garnered considerable research interest for realizing a new generation of information processing devices and exploring macroscopic quantum effect. In this study, we proposed and designed a hetero-optomechanical crystal (OMC) zipper cavity comprising double OMC nanobeams as a versatile platform for multimode optomechanics. Herein, the heterostructure and breathing modes with high mechanical frequency ensured the operation of the zipper cavity at the deep-sideband-resolved regime and the mechanical coherence. Consequently, the mechanical breathing mode at 5.741 GHz and optical odd mode with an intrinsic optical Q factor of 3.93 × 105 were experimentally demonstrated with an optomechanical coupling rate g0 = 0.73 MHz between them, which is comparable to state-of-the-art properties of the reported OMC. In addition, the hetero-zipper cavity structure exhibited adequate degrees of freedom for designing multiple mechanical and optical modes. Thus, the proposed cavity will provide a playground for studying multimode optomechanics in both the classical and quantum regimes. Full article
(This article belongs to the Special Issue Optomechanics: Science and Applications)
Show Figures

Figure 1

15 pages, 5968 KB  
Article
The Dynamical Casimir Effect in a Dissipative Optomechanical Cavity Interacting with Photonic Crystal
by Satoshi Tanaka and Kazuki Kanki
Physics 2020, 2(1), 34-48; https://doi.org/10.3390/physics2010005 - 7 Feb 2020
Cited by 9 | Viewed by 6809
Abstract
We theoretically study the dynamical Casimir effect (DCE), i.e., parametric amplification of a quantum vacuum, in an optomechanical cavity interacting with a photonic crystal, which is considered to be an ideal system to study the microscopic dissipation effect on the DCE. Starting from [...] Read more.
We theoretically study the dynamical Casimir effect (DCE), i.e., parametric amplification of a quantum vacuum, in an optomechanical cavity interacting with a photonic crystal, which is considered to be an ideal system to study the microscopic dissipation effect on the DCE. Starting from a total Hamiltonian including the photonic band system as well as the optomechanical cavity, we have derived an effective Floquet–Liouvillian by applying the Floquet method and Brillouin–Wigner–Feshbach projection method. The microscopic dissipation effect is rigorously taken into account in terms of the energy-dependent self-energy. The obtained effective Floquet–Liouvillian exhibits the two competing instabilities, i.e., parametric and resonance instabilities, which determine the stationary mode as a result of the balance between them in the dissipative DCE. Solving the complex eigenvalue problem of the Floquet–Liouvillian, we have determined the stationary mode with vanishing values of the imaginary parts of the eigenvalues. We find a new non-local multimode DCE represented by a multimode Bogoliubov transformation of the cavity mode and the photon band. We show the practical advantage for the observation of DCE in that we can largely reduce the pump frequency when the cavity system is embedded in a narrow band photonic crystal with a bandgap. Full article
(This article belongs to the Special Issue The Quantum Vacuum)
Show Figures

Figure 1

5 pages, 1790 KB  
Proceeding Paper
Multimode Cavity Optomechanics
by Paolo Piergentili, Letizia Catalini, Mateusz Bawaj, Stefano Zippili, Nicola Malossi, Riccardo Natali, David Vitali and Giovanni Di Giuseppe
Proceedings 2019, 12(1), 54; https://doi.org/10.3390/proceedings2019012054 - 12 Nov 2019
Cited by 2 | Viewed by 1534
Abstract
We study theoretically and experimentally the behavior of an optomechanical system where two vibrating dielectric membranes are placed inside a driven Fabry-Pérot cavity. We prove that multi–element systems of mechanical resonators are suitable for enhancing optomechanical performances, and we report a ∼2.47 gain [...] Read more.
We study theoretically and experimentally the behavior of an optomechanical system where two vibrating dielectric membranes are placed inside a driven Fabry-Pérot cavity. We prove that multi–element systems of mechanical resonators are suitable for enhancing optomechanical performances, and we report a ∼2.47 gain in the optomechanical coupling strength of the membrane relative motion with respect to the single membrane case. With this configuration it is possible to enable cavity optomechanics in the strong single-photon coupling regime. Full article
(This article belongs to the Proceedings of 11th Italian Quantum Information Science conference (IQIS2018))
Show Figures

Figure 1

Back to TopTop