Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = multicomponent nanostructured alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6154 KiB  
Review
Recent Advances in Cu-Based Metal–Organic Framework Electrocatalysts for CO2 Reduction Reactions
by Honglin Gao, Ting Yang, Wen Nie, Yuefeng Gao, Zhen Wang and Aiyi Dong
Catalysts 2025, 15(4), 328; https://doi.org/10.3390/catal15040328 - 30 Mar 2025
Viewed by 1284
Abstract
The electrochemical reduction of carbon dioxide (CO2RR) utilizing intermittent electricity from renewable energy sources represents an emerging and promising approach to achieve carbon neutrality and mitigate the greenhouse effect. This review comprehensively summarizes recent advances in Cu-based metal–organic framework (MOF) electrocatalysts [...] Read more.
The electrochemical reduction of carbon dioxide (CO2RR) utilizing intermittent electricity from renewable energy sources represents an emerging and promising approach to achieve carbon neutrality and mitigate the greenhouse effect. This review comprehensively summarizes recent advances in Cu-based metal–organic framework (MOF) electrocatalysts for CO2RR, focusing on their applications in producing C1 and C2+ products. This paper highlights key strategies such as nanostructure manipulation, multi-component tandem catalysis, single-atom alloying, and ligand functionalization to optimize the binding energies of intermediate species and promote selective CO2RR pathways. Numerous examples are presented, showcasing remarkable Faradaic efficiencies and product selectivities achieved through rational catalyst design. Furthermore, the use of MOF-derived materials and composites with other materials, like carbon nanotubes, graphene, and metal oxides, is discussed to enhance conductivity, stability, and selectivity. Despite the significant progress, challenges remain in achieving stable and scalable catalysts with high activity and selectivity towards specific C2+ products. This review underscores the importance of precise control of catalyst composition, structure, and surface properties to tackle these challenges and provides valuable insights for future research directions in developing advanced Cu-based MOF electrocatalysts for practical applications in CO2 conversion technologies. Full article
Show Figures

Figure 1

22 pages, 22043 KiB  
Article
Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy
by Alexey Vereschaka, Nikolai Cherenda, Catherine Sotova, Vladimir Uglov, Olga Reva, Anna Basalai, Alexander Isobello and Natalia Baranova
Coatings 2023, 13(12), 2028; https://doi.org/10.3390/coatings13122028 - 30 Nov 2023
Cited by 7 | Viewed by 1702
Abstract
Phase-structural characteristics and the corrosion resistance of coatings ZrN, (Zr,Ti)N, (Zr,Hf)N, (Zr,Nb)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N, which were deposited on a Ti6Al-4V titanium alloy substrate, were investigated. It was found that the titanium substrate has a crystalline structure, including grains with high (up to [...] Read more.
Phase-structural characteristics and the corrosion resistance of coatings ZrN, (Zr,Ti)N, (Zr,Hf)N, (Zr,Nb)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N, which were deposited on a Ti6Al-4V titanium alloy substrate, were investigated. It was found that the titanium substrate has a crystalline structure, including grains with high (up to 24 at.%) and low (less than 2 at.%) vanadium content. Thus, during the deposition process, the coating can form adhesive bonds with local areas of the substrate that have quite different compositions. The diffusion of the coating elements into the substrate takes place up to a depth of 200 nm. The diffusion of titanium alloy elements (primarily titanium and vanadium) into the adhesive sublayer of the coating to a depth of 100 nm is also observed. Corrosion studies were carried out in 1M solutions with acidic (H2SO4), alkaline (NaOH) and neutral (NaCl) media at a constant temperature of 50 °C. The actual change in the mass of the samples during corrosion tests is extremely small. The protective coatings under study have very high anti-corrosion characteristics and practically do not react with solutions that imitate the liquid environments of the human body. Full article
(This article belongs to the Special Issue Technologies of Coatings and Surface Hardening for Tool Industry III)
Show Figures

Figure 1

12 pages, 3733 KiB  
Article
Influences of Synthetic Parameters on Morphology and Growth of High Entropy Oxide Nanotube Arrays
by Yunzhu Shi, Rui Li and Zhifeng Lei
Coatings 2023, 13(1), 46; https://doi.org/10.3390/coatings13010046 - 27 Dec 2022
Cited by 2 | Viewed by 2222
Abstract
Nanoscale and nanostructured materials have drawn great attention owing to their outstanding and unique properties. Enlightened by the study of “entropy-stabilized oxides”, nanotubes consisting of multi-component mixed metal oxides are developed, which formed on equi-atomic TiZrHfNbTa high-entropy alloy (HEA). However, the growth mechanism [...] Read more.
Nanoscale and nanostructured materials have drawn great attention owing to their outstanding and unique properties. Enlightened by the study of “entropy-stabilized oxides”, nanotubes consisting of multi-component mixed metal oxides are developed, which formed on equi-atomic TiZrHfNbTa high-entropy alloy (HEA). However, the growth mechanism and how the oxidation conditions influence the nanotube growth and morphology remains unknown. In the present study, by controlling the anodization parameters (applied voltages and time) and bath compositions (fluoride concentration and water content), scanning electron microscope and transmission electron microscopy are conducted to reveal the morphological evolution. The present work uncovers how the synthetic parameters influence the tube growth and morphology formed on equi-atomic TiZrHfNbTa HEA, therefore gaining insight into the growth mechanism and the feasibility of controlling the morphology of multi-component oxide nanotubes. Full article
(This article belongs to the Special Issue Advanced High-Entropy Materials and Coatings)
Show Figures

Figure 1

12 pages, 1910 KiB  
Article
[NiEn3](MoO4)0.5(WO4)0.5 Co-Crystals as Single-Source Precursors for Ternary Refractory Ni–Mo–W Alloys
by Polina S. Serebrennikova, Vladislav Y. Komarov, Aleksandr S. Sukhikh, Svetlana P. Khranenko, Andrey V. Zadesenets, Sergey A. Gromilov and Kirill V. Yusenko
Nanomaterials 2021, 11(12), 3272; https://doi.org/10.3390/nano11123272 - 1 Dec 2021
Cited by 9 | Viewed by 2366
Abstract
The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According [...] Read more.
The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown. Full article
Show Figures

Figure 1

19 pages, 13353 KiB  
Review
Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media
by Aldona Kostuch, Iwona A. Rutkowska, Beata Dembinska, Anna Wadas, Enrico Negro, Keti Vezzù, Vito Di Noto and Pawel J. Kulesza
Molecules 2021, 26(17), 5147; https://doi.org/10.3390/molecules26175147 - 25 Aug 2021
Cited by 20 | Viewed by 4713
Abstract
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O [...] Read more.
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt–Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal–support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Graphical abstract

18 pages, 5236 KiB  
Article
Deposition of Multicomponent AlTiCrMoN Protective Coatings for Metal Cutting Applications
by Yin-Yu Chang and Chih-Cheng Chuang
Coatings 2020, 10(7), 605; https://doi.org/10.3390/coatings10070605 - 28 Jun 2020
Cited by 14 | Viewed by 3284
Abstract
The high potential of the protective coatings for metal machining applications using the physical vapor deposition (PVD) processes is one to be valued, and will accelerate development of the multicomponent coating design and increase the cutting efficiency. In this study, nanostructured AlTiCrMoN coatings [...] Read more.
The high potential of the protective coatings for metal machining applications using the physical vapor deposition (PVD) processes is one to be valued, and will accelerate development of the multicomponent coating design and increase the cutting efficiency. In this study, nanostructured AlTiCrMoN coatings in a multilayered structure were fabricated using cathodic-arc deposition (CAD). Controlling the cathode current of both CrMo and AlTi alloy targets in a nitrogen environment, multilayered AlTiN/CrMoN coatings were deposited. The AlTiN and AlTiN/CrMoN multilayered coatings exhibit a face-centered cubic (fcc) structure with columnar morphologies. The highest hardness of 35.6 ± 1.5 GPa was obtained for the AlTiN coating; however, the H3/E*2 and H/E* values were the lowest (0.124 and 0.059, respectively). The multilayered AlTiN/CrMoN coatings possessed higher H3/E*2 and H/E* values of up to 0.157 and 0.071, respectively. The present study investigated the cutting performance of end mills in the milling of SUS316L stainless steel. The cutting performance was evaluated in terms of cutting length and tool wear. Because of high resistance to adhesive and abrasive wear, the end mills coated with multilayered AlTiN/CrMoN showed less flank wear than monolithic AlTiN. The introduction of CrMoN sublayers improved the cutting tool life of AlTiN. Full article
Show Figures

Figure 1

Back to TopTop