Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = multi-thiol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3461 KiB  
Article
Effects of Multi-Fluorinated Liquid Crystals with High Refractive Index on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals
by Yunxiao Ren and Wei Hu
Materials 2025, 18(7), 1406; https://doi.org/10.3390/ma18071406 - 21 Mar 2025
Viewed by 524
Abstract
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the [...] Read more.
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the LCs and polymers. In this work, PDLC films were prepared based on the thiol-ene click reaction, and effects of refractive indexes of polymers and LCs on their electro-optical properties were studied. The refractive indexes of the polymer matrix are adjusted by controlling the content of sulfur element, and those of the LCs are adjusted by adding multi-fluorinated LCs with high refractive index. By regulating the refractive indexes of the polymer matrix and LCs, the maximum transmittance of the film is raised and the viewing angle of the film is also extended. This work could afford some ideas for the directional regulation of the viewing angles and the electro-optical properties of the PDLC film. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

8 pages, 954 KiB  
Communication
On-Resin Acetamidomethyl (Acm) Removal and Disulfide Formation in Cysteinyl Peptides Using N-Chlorosuccinimide (NCS) in the Presence of Other Cys-Protecting Groups
by Amit Chakraborty, Fernando Albericio and Beatriz G. de la Torre
Int. J. Mol. Sci. 2025, 26(6), 2523; https://doi.org/10.3390/ijms26062523 - 11 Mar 2025
Viewed by 1450
Abstract
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective [...] Read more.
Acetamidomethyl (Acm)-protected cysteine derivatives are essential components of multi-disulfide synthesis, particularly due to the availability of multimodal removal conditions for Acm protection. Most of these removal conditions are harsh and are commonly used to remove Acm protection at the last step of regioselective synthesis of a multi-disulfide, implying that the removal of Acm is performed in the absence of other Cys thiol protections. In this context, N-chlorosuccinimide (NCS)-mediated removal of Acm and concomitant disulfide bridge formation provides a fast and reliable way to synthesize multi-disulfides. In the present study, we demonstrate that NCS-mediated Acm removal and disulfide bond formation can be performed in the presence of other commonly used Cys thiol protections. Interestingly, Acm can be removed with NCS without affecting the Trt group, which is also removed with I2. Later, we successfully employ the NCS-based Acm removal method in the synthesis of multi-disulfide peptides like α-conotoxin SI. Full article
(This article belongs to the Special Issue Solid-Phase Peptides: Syntheses and Applications)
Show Figures

Figure 1

17 pages, 2133 KiB  
Article
A Truncated Multi-Thiol Aptamer-Based SARS-CoV-2 Electrochemical Biosensor: Towards Variant-Specific Point-of-Care Detection with Optimized Fabrication
by Sergio Roberto Molina Ramirez, Nafiseh Samiseresht, Mateo Alejandro Martínez-Roque, Ferdinando Catania, Kevin Graef, Martin Rabe, Andreas Offenhäusser, Dirk Mayer and Gabriela Figueroa-Miranda
Biosensors 2025, 15(1), 24; https://doi.org/10.3390/bios15010024 - 6 Jan 2025
Cited by 1 | Viewed by 2110
Abstract
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two [...] Read more.
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density. The biosensor fabrication, optimization, and detection were verified in detail by electrochemistry, QCM-D, SPR, and XPS. The analyte–receptor binding was further confirmed spectroscopically at the level of individual molecules by AFM-IR. The aptasensor possesses a low limit of detection (8.0 fg/mL), the highest sensitivity reported for S protein (209.5 signal per concentration decade), and a wide dynamic detection range (8.0 fg/mL–38 ng/mL) in nasopharyngeal samples, covering the clinically relevant range. Furthermore, the C9t aptasensor showed high selectivity for SARS-CoV-2 S proteins over biomarkers for MERS-CoV, RSV, and Influenza. Even more, it showed a three times higher sensitivity for the Omicron in comparison to the Wuhan strain (wild type), alpha, and beta variants of the SARS-CoV-2 virus. Those results demonstrate the creation of an affordable and variant-selective refined C9t aptasensor that outperformed current rapid diagnosis tests. Full article
Show Figures

Graphical abstract

39 pages, 10969 KiB  
Review
Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine
by Neyra Citlali Cabrera-Quiñones, Luis José López-Méndez, Carlos Cruz-Hernández and Patricia Guadarrama
Int. J. Mol. Sci. 2025, 26(1), 36; https://doi.org/10.3390/ijms26010036 - 24 Dec 2024
Cited by 2 | Viewed by 3011
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, [...] Read more.
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols—such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms—can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), inverse electron-demand Diels–Alder (IEDDA) and thiol–ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities—all essential in the field of nanomedicine. Full article
Show Figures

Graphical abstract

12 pages, 3020 KiB  
Article
One-Pot Syntheses of [c2]Daisy-Chain Rotaxane Networks via Thiol-Ene Reaction and Its Application to Gel Electrolyte for Secondary Battery
by Risako Kamoto, Kenjiro Onimura and Kazuhiro Yamabuki
Reactions 2024, 5(4), 800-811; https://doi.org/10.3390/reactions5040041 - 16 Oct 2024
Viewed by 1430
Abstract
A new topological material, the [c2]daisy-chain rotaxane network, was successfully synthesized via a thiol-ene reaction between a [c2]daisy-chain rotaxane, which consists of a host–guest compound (H–G compound) where a crown ether and a secondary ammonium salt are linked, and a multi-branched thiol compound. [...] Read more.
A new topological material, the [c2]daisy-chain rotaxane network, was successfully synthesized via a thiol-ene reaction between a [c2]daisy-chain rotaxane, which consists of a host–guest compound (H–G compound) where a crown ether and a secondary ammonium salt are linked, and a multi-branched thiol compound. The resulting network polymer exhibited higher compressive strength compared to one without the [c2]daisy-chain rotaxane. Additionally, the neutralized [c2]daisy-chain rotaxane network, in which the ammonium salt was neutralized and there was no interaction with the crown ether, showed increased rigidity compared to its state before neutralization. Furthermore, a gel electrolyte was prepared by impregnating the [c2]daisy-chain rotaxane network with an organic electrolyte containing dissolved lithium salts, and its ionic conductivity was investigated. As a result, high ionic conductivity was achieved despite the high polymer content. Full article
Show Figures

Graphical abstract

23 pages, 2031 KiB  
Article
Comparative Analysis of Cystamine and Cysteamine as Radioprotectors and Antioxidants: Insights from Monte Carlo Chemical Modeling under High Linear Energy Transfer Radiation and High Dose Rates
by Samafou Penabeï, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Int. J. Mol. Sci. 2024, 25(19), 10490; https://doi.org/10.3390/ijms251910490 - 29 Sep 2024
Viewed by 1308
Abstract
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species [...] Read more.
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine’s enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)
by Bin Xu, Zhong-Ming Xia, Rui Zhan and Ke-Ke Yang
Polymers 2024, 16(16), 2280; https://doi.org/10.3390/polym16162280 - 11 Aug 2024
Viewed by 1651
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic [...] Read more.
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol–epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 18381 KiB  
Article
Occurrence of State of Gold in Crude Oil and Its Economic Significance
by Zhiyong Ni, Wen Zhang, Jie Liu, Shengbao Shi, Xue Wang and Yang Su
Minerals 2024, 14(4), 351; https://doi.org/10.3390/min14040351 - 28 Mar 2024
Cited by 1 | Viewed by 2144
Abstract
Gold and petroleum are also strategic resources of great importance to national security. With the increasing demand for energy, multi-energy cooperative exploration has become an inevitable trend of resource development and utilization. Petroleum and hydrothermal gold deposits may form together, with similar evolutionary [...] Read more.
Gold and petroleum are also strategic resources of great importance to national security. With the increasing demand for energy, multi-energy cooperative exploration has become an inevitable trend of resource development and utilization. Petroleum and hydrothermal gold deposits may form together, with similar evolutionary trends in their formation, migration, and enrichment. Petroleum reservoirs and gold deposits are closely coupled under certain geological conditions. The solubility of gold in crude oil and its forms of occurrence are important in determining the mechanisms of interaction between gold and petroleum and in facilitating the recovery of gold from gold-bearing petroleum. In this study, the occurrence of gold in crude oil from the Linnan Depression in the Bohai Bay Basin, China, was studied using inductively coupled plasma–mass spectrometry and X-ray photoelectron spectroscopy. Concentrations of gold in crude oil from the Linpan and Shanghe oilfields averaged 44.5 ppb, which is well above the minimum concentration required for hydrothermal gold mineralization. Gold has an affinity with carbon, oxygen, and sulfur, and its concentration in crude oil is positively correlated with total acid and sulfur contents. We speculate that gold may exist in crude oil as complexes with organic acids or thiols, with crude oil thus being a transport medium for gold. Full article
Show Figures

Figure 1

13 pages, 6254 KiB  
Article
Solvent-Free Reaction for Unsymmetrical Organodisulfides with High Purity and Application as Cathode-Active Materials
by Yuta Tsukaguchi, Kazuki Shinoda, Yusei Noda, Yui Hatta, Kentaro Tsubouchi, Naoko Shokura, Fumiya Nakamura, Hiromi Kimura-Suda, Hirofumi Yoshikawa, Takeshi Shimizu and Naoki Tanifuji
Materials 2024, 17(3), 699; https://doi.org/10.3390/ma17030699 - 1 Feb 2024
Cited by 1 | Viewed by 1282
Abstract
Unsymmetrical disulfides, in which different organic groups are bonded to disulfide bonds, have been synthesized by cross-coupling reactions using thiols as substrates. However, due to the low-binding energy of unsymmetrical disulfides, its disproportionation occurs based on the side reactions with nucleophilic thiols, resulting [...] Read more.
Unsymmetrical disulfides, in which different organic groups are bonded to disulfide bonds, have been synthesized by cross-coupling reactions using thiols as substrates. However, due to the low-binding energy of unsymmetrical disulfides, its disproportionation occurs based on the side reactions with nucleophilic thiols, resulting in the impurity of symmetric disulfides. In this study, we developed a solvent-free synthesis method for unsymmetrical disulfides using thiosulfonates, thiols, and a base. This synthetic method enabled us to obtain highly pure diaryl-substituted unsymmetrical disulfides with particularly low-binding energy without control over the nucleophilicity and elimination properties of the substrate. Furthermore, it was observed that the disproportionation of unsymmetrical disulfides occurred in the solvent. This means that solvent-free condition is one of the factors to obtain unsymmetrical disulfides. As a new application of unsymmetrical disulfides, we applied unsymmetrical disulfides to cathode active materials of lithium batteries based on the reversible multi-electron redox activity of S–S bonds. The batteries using unsymmetrical disulfide cathode-active materials with a carbon nanotube exhibited initial capacities of 127 and 158 Ah/kg, equal to 42 and 53% of their theoretical ones. We demonstrated that unsymmetrical disulfides could be used as cathode-active materials for rechargeable batteries. Full article
Show Figures

Figure 1

11 pages, 2416 KiB  
Article
Solution-Processed Functionalized MoS2 Nanosheets Composite for Photodetection Application
by Alexander V. Kukhta, Enliu Hong, Nadzeya I. Valynets, Sergei A. Maksimenko, Uladzislau Parkhomenka, Nikita Belko, Anatoly Lugovsky, Tatiana A. Pavich, Iryna N. Kukhta, Ziqing Li and Xiaosheng Fang
Photonics 2023, 10(12), 1295; https://doi.org/10.3390/photonics10121295 - 24 Nov 2023
Viewed by 1709
Abstract
Charge-transfer organic-inorganic complexes have demonstrated great potential in optoelectronic applications. Herein, a drop-casting processed photodetector based on thick composite films made of multi-layered MoS2 nanosheets chemically bonded to linear molecules of aromatic thiols has been developed. Composites based on multilayered nanosheets allow [...] Read more.
Charge-transfer organic-inorganic complexes have demonstrated great potential in optoelectronic applications. Herein, a drop-casting processed photodetector based on thick composite films made of multi-layered MoS2 nanosheets chemically bonded to linear molecules of aromatic thiols has been developed. Composites based on multilayered nanosheets allow for facile preparation of low-cost, large-area, and flexible devices. It was demonstrated that a simple functionalization of ultradispersed MoS2 nanosheets with linear aromatic thiol results in the formation of charge and energy transfer complexes. A photodetector with functionalized MoS2 nanosheet film prepared by drop coating with Au electrodes demonstrated enhanced performance compared to pure materials. Our first experiments illustrated that functionalization of MoS2 nanosheets by a paraquaterphenyl thiol derivative leads to a significant increase in the photoresponse speed (by a factor of 12) and decay speed (by a factor of 17.5), in addition to the enhancement of the photostability of the MoS2 based photodetector. The photo current value has been increased by about an order of magnitude. The proposed approach offers promising prospects for further development of photodetectors. Full article
(This article belongs to the Special Issue Photodetector Materials and Optoelectronic Devices)
Show Figures

Figure 1

11 pages, 5646 KiB  
Article
Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial
by Mohamed Rabia, Asmaa M. Elsayed, Ahmed M. Salem and Maha Abdallah Alnuwaiser
Micromachines 2023, 14(7), 1424; https://doi.org/10.3390/mi14071424 - 14 Jul 2023
Cited by 8 | Viewed by 1505
Abstract
A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal candidate for use as a pseudo supercapacitor. To enhance the capacitance [...] Read more.
A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal candidate for use as a pseudo supercapacitor. To enhance the capacitance behavior, a porous ball structure polypyrrole (PB-Ppy) was incorporated into the nanocomposite. When tested at 0.2 A/g, the capacitance values of the R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy were found to be 19.6 F/g and 92 F/g, respectively, indicating a significant increase in capacitance due to the addition of PB-Ppy. The energy density was also found to increase from 1.18 Wh.kg−1 for R-GO/P2ABT-ML to 5.43 Wh.kg−1 for R-GO/P2ABT-ML/PB-Ppy. The stability of the supercapacitor was found to be significantly enhanced by the addition of PB-Ppy. The retention coefficients at 100 and 500 charge cycles for R-GO/P2ABT-ML/PB-Ppy were 95.6% and 85.0%, respectively, compared to 89% and 71% for R-GO/P2ABT-ML without PB-Ppy. Given the low cost, mass production capability, and easy fabrication process of this pseudo capacitor, it holds great potential for commercial applications. Therefore, a prototype of this supercapacitor can be expected to be synthesized soon. Full article
(This article belongs to the Special Issue Graphene-Nanocomposite-Based Flexible Supercapacitors)
Show Figures

Figure 1

16 pages, 3797 KiB  
Article
Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes
by Peter Myintzaw, Vincenzo Pennone, Olivia McAuliffe, Máire Begley and Michael Callanan
Microorganisms 2023, 11(6), 1603; https://doi.org/10.3390/microorganisms11061603 - 17 Jun 2023
Cited by 13 | Viewed by 4334
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical [...] Read more.
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher’s exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes 2.0)
Show Figures

Figure 1

18 pages, 3332 KiB  
Article
Extracellular Vesicles Isolation from Large Volume Samples Using a Polydimethylsiloxane-Free Microfluidic Device
by Cristina Bajo-Santos, Miks Priedols, Pauls Kaukis, Gunita Paidere, Romualds Gerulis-Bergmanis, Gatis Mozolevskis, Arturs Abols and Roberts Rimsa
Int. J. Mol. Sci. 2023, 24(9), 7971; https://doi.org/10.3390/ijms24097971 - 27 Apr 2023
Cited by 13 | Viewed by 3160
Abstract
Extracellular vesicles (EV) have many attributes important for biomedicine; however, current EV isolation methods require long multi-step protocols that generally involve bulky equipment that cannot be easily translated to clinics. Our aim was to design a new cyclic olefin copolymer–off-stoichiometry thiol-ene (COC–OSTE) asymmetric [...] Read more.
Extracellular vesicles (EV) have many attributes important for biomedicine; however, current EV isolation methods require long multi-step protocols that generally involve bulky equipment that cannot be easily translated to clinics. Our aim was to design a new cyclic olefin copolymer–off-stoichiometry thiol-ene (COC–OSTE) asymmetric flow field fractionation microfluidic device that could isolate EV from high-volume samples in a simple and efficient manner. We tested the device with large volumes of urine and conditioned cell media samples, and compared it with the two most commonly used EV isolation methods. Our device was able to separate particles by size and buoyancy, and the attained size distribution was significantly smaller than other methods. This would allow for targeting EV size fractions of interest in the future. However, the results were sample dependent, with some samples showing significant improvement over the current EV separation methods. We present a novel design for a COC–OSTE microfluidic device, based on bifurcating asymmetric flow field-flow fractionation (A4F) technology, which is able to isolate EV from large volume samples in a simple, continuous-flow manner. Its potential to be mass-manufactured increases the chances of implementing EV isolation in a clinical or industry-friendly setting, which requires high repeatability and throughput. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

19 pages, 1876 KiB  
Article
Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity
by Marina Abuladze, Nino Asatiani, Tamar Kartvelishvili, Danil Krivonos, Nadezhda Popova, Alexey Safonov, Nelly Sapojnikova, Nikita Yushin and Inga Zinicovscaia
Toxics 2023, 11(4), 304; https://doi.org/10.3390/toxics11040304 - 25 Mar 2023
Cited by 1 | Viewed by 1998
Abstract
The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB [...] Read more.
The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB 2-1 in single and multi-metal systems was assessed using the inductively coupled plasma atomic emission spectroscopy. To estimate the response of the bacteria’s antioxidant defense system, doses of 20 and 50 mg/L of single studied metals and 20 mg/L of each metal in their combinations (non-toxic doses, determined by the colony-forming viability assay) were used. Emphasis was given to catalase and superoxide dismutase since they form the primary line of defense against heavy metal action and their regulatory circuit of activity is crucial. The effect of metal ions on total thiol content, an indicator of cellular redox homeostasis, in bacterial cells was evaluated. Genome sequencing of Shewanella xiamenensis DCB 2-1 reveals genes responsible for heavy metal tolerance and detoxification, thereby improving understanding of the potential of the bacterial strain for bioremediation. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

11 pages, 1421 KiB  
Communication
HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines
by Mingjie Gao and Stefan Günther
Int. J. Mol. Sci. 2023, 24(6), 5960; https://doi.org/10.3390/ijms24065960 - 22 Mar 2023
Cited by 5 | Viewed by 2858
Abstract
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines [...] Read more.
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines are equally reactive or accessible. Hence, to identify targetable cysteines, we propose a novel ensemble stacked machine learning (ML) model to predict hyper-reactive druggable cysteines, named HyperCys. First, the pocket, conservation, structural and energy profiles, and physicochemical properties of (non)covalently bound cysteines were collected from both protein sequences and 3D structures of protein–ligand complexes. Then, we established the HyperCys ensemble stacked model by integrating six different ML models, including K-nearest neighbors, support vector machine, light gradient boost machine, multi-layer perceptron classifier, random forest, and the meta-classifier model logistic regression. Finally, based on the hyper-reactive cysteines’ classification accuracy and other metrics, the results for different feature group combinations were compared. The results show that the accuracy, F1 score, recall score, and ROC AUC values of HyperCys are 0.784, 0.754, 0.742, and 0.824, respectively, after performing 10-fold CV with the best window size. Compared to traditional ML models with only sequenced-based features or only 3D structural features, HyperCys is more accurate at predicting hyper-reactive druggable cysteines. It is anticipated that HyperCys will be an effective tool for discovering new potential reactive cysteines in a wide range of nucleophilic proteins and will provide an important contribution to the design of targeted covalent inhibitors with high potency and selectivity. Full article
(This article belongs to the Special Issue Early-Stage Drug Discovery: Advances and Challenges)
Show Figures

Figure 1

Back to TopTop