Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = multi-segmented NWs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7958 KB  
Article
Multi-Scale Characterization and Modeling of Natural Fractures in Ultra-Deep Tight Sandstone Reservoirs: A Case Study of Bozi-1 Gas Reservoir in Kuqa Depression
by Li Dai, Xingnan Ren, Chengze Zhang, Yuanji Qu, Binghui Song, Xiaoyan Wang and Wei Tian
Processes 2025, 13(12), 4080; https://doi.org/10.3390/pr13124080 - 18 Dec 2025
Viewed by 307
Abstract
Natural fractures in tight sandstone reservoirs are the key factors controlling hydrocarbon flow and productivity. The Bozi-1 gas reservoir in the Kuqa Depression, as a typical ultra-deep tight sandstone gas reservoir, is characterized by low-porosity and ultra-low-permeability sandstones. This study addresses the limitations [...] Read more.
Natural fractures in tight sandstone reservoirs are the key factors controlling hydrocarbon flow and productivity. The Bozi-1 gas reservoir in the Kuqa Depression, as a typical ultra-deep tight sandstone gas reservoir, is characterized by low-porosity and ultra-low-permeability sandstones. This study addresses the limitations of previous fracture characterization, which primarily focused on macro-structural fractures while neglecting medium- and small-scale fractures. We integrate multi-source heterogeneous data, including core, well-logging imaging, seismic, and production observations, to systematically conduct multi-scale natural fracture characterization and modeling. First, the overall geology of the study area is briefly introduced, followed by a detailed description of the development characteristics of large-scale and medium–small-scale fractures, achieving a multi-scale representation of complex curved fracture networks. Finally, the three-dimensional multi-scale fracture model is validated using static indicators, including production characteristics, water invasion features, and well leakage data. The main findings are as follows: (1) Large-scale fractures in the Bozi-1 reservoir are mainly oriented near EW, NE–SW, and NW–SE, acting as the primary hydrocarbon migration pathways. Medium–small-scale fractures predominantly develop near SN, NE–SW, NW–SE, and near EW directions, exhibiting strong heterogeneity. (2) The complex curvature of large-scale fractures was captured by the “adaptive sampling + segmented splicing + equivalent distribution of fracture flow capacity” method, while the distribution of effective medium–small-scale fractures across the study area was represented using “single-well Stoneley wave inversion + seismic machine learning prediction”, achieving an 86% match with actual single-well measurements. (3) Model reliability was further verified through static comparisons, including production characteristics (unimpeded flow vs. effective fracture density, R2 = 0.92), water invasion features (fracture-dominated water invasion matching fracture distribution), and well leakage characteristics (matching rate of high fracture density zones: 84.2%). The results provide key technical support for the precise characterization of fracture systems and establish a model ready for dynamic simulation in ultra-deep tight sandstone gas reservoirs. Full article
Show Figures

Figure 1

14 pages, 9959 KB  
Article
Three-Dimensional Fault-Fold Growth Deciphered from Combined Seismic and Geological Data: A Case Study from the Xiongpo Anticline, Longmen Shan Piedmont
by Xianyi Li, Xinru Zheng, Xiangming Dai, Rafael Almeida and Chuang Sun
Minerals 2022, 12(11), 1405; https://doi.org/10.3390/min12111405 - 3 Nov 2022
Cited by 3 | Viewed by 2441
Abstract
The Xiongpo fault-fold belt shows prominent NE, ENE- and ~N–S-trending relief, which resulted from multi-stage upper crustal shortening in the Longmen Shan piedmont during the eastward growth of the eastern Tibetan Plateau. Previous studies have determined its 2D structural configurations from seismic profiles [...] Read more.
The Xiongpo fault-fold belt shows prominent NE, ENE- and ~N–S-trending relief, which resulted from multi-stage upper crustal shortening in the Longmen Shan piedmont during the eastward growth of the eastern Tibetan Plateau. Previous studies have determined its 2D structural configurations from seismic profiles and field-based geological cross-sections. Here, we extend this analysis into the entire belt to explore the 3D structural evolution of this complex fault-fold belt and have built a 3D regional fault model. The results reveal along-strike variation of subsurface structural architecture of the Xiongpo fault-fold belt, which is characterized by transformation from a complex superimposition of a deep fault-bend fold beneath a shallow structural wedge in the center segment to a simple shallow fault-bend fold on both ends of the structure, and then to a trishear fault propagation fold on the plunging edges. This structural transformation determines the contrast between the NE-striking relief of the central segment, and the ENE- and ~N-S-striking relief in the two plunging zones. We combine our results with published low-temperature thermochronology and growth strata results to propose a three-stage evolution for the Xiongpo fault-fold belt that closely relates with regional stress field changes, including a NE-striking fault under the NW–SE compression between 40–25 Ma and 15–10 Ma, lateral propagation of the NE-striking fault and initiation of ENE-striking fault by WNW–ESE compression from ~5–2 Ma, ~N–S fault under ~E–W compression until the present. This work enhances our understanding of the stress field changes of eastern Tibet since the Late Eocene. It also can serve as a typical case study deciphering 3D fault-fold growth using seismic and geological imaging, which is helpful to understand 3D structural and landscape evolutions of other complex fault-fold belts worldwide. Full article
Show Figures

Figure 1

11 pages, 2707 KB  
Article
Distinguishing Local Demagnetization Contribution to the Magnetization Process in Multisegmented Nanowires
by Jorge Marqués-Marchán, Jose Angel Fernandez-Roldan, Cristina Bran, Robert Puttock, Craig Barton, Julián A. Moreno, Jürgen Kosel, Manuel Vazquez, Olga Kazakova, Oksana Chubykalo-Fesenko and Agustina Asenjo
Nanomaterials 2022, 12(12), 1968; https://doi.org/10.3390/nano12121968 - 8 Jun 2022
Cited by 5 | Viewed by 3153
Abstract
Cylindrical magnetic nanowires are promising materials that have the potential to be used in a wide range of applications. The versatility of these nanostructures is based on the tunability of their magnetic properties, which is achieved by appropriately selecting their composition and morphology. [...] Read more.
Cylindrical magnetic nanowires are promising materials that have the potential to be used in a wide range of applications. The versatility of these nanostructures is based on the tunability of their magnetic properties, which is achieved by appropriately selecting their composition and morphology. In addition, stochastic behavior has attracted attention in the development of neuromorphic devices relying on probabilistic magnetization switching. Here, we present a study of the magnetization reversal process in multisegmented CoNi/Cu nanowires. Nonstandard 2D magnetic maps, recorded under an in-plane magnetic field, produce datasets that correlate with magnetoresistance measurements and micromagnetic simulations. From this process, the contribution of the individual segments to the demagnetization process can be distinguished. The results show that the magnetization reversal in these nanowires does not occur through a single Barkhausen jump, but rather by multistep switching, as individual CoNi segments in the NW undergo a magnetization reversal. The existence of vortex states is confirmed by their footprint in the magnetoresistance and 2D MFM maps. In addition, the stochasticity of the magnetization reversal is analysed. On the one hand, we observe different switching fields among the segments due to a slight variation in geometrical parameters or magnetic anisotropy. On the other hand, the stochasticity is observed in a series of repetitions of the magnetization reversal processes for the same NW under the same conditions. Full article
(This article belongs to the Special Issue Magnetic Nanomaterials and Nanostructures)
Show Figures

Figure 1

12 pages, 2924 KB  
Article
The Magnetic Properties of Fe/Cu Multilayered Nanowires: The Role of the Number of Fe Layers and Their Thickness
by Sofia Caspani, Suellen Moraes, David Navas, Mariana P. Proenca, Ricardo Magalhães, Cláudia Nunes, João Pedro Araújo and Célia T. Sousa
Nanomaterials 2021, 11(10), 2729; https://doi.org/10.3390/nano11102729 - 15 Oct 2021
Cited by 18 | Viewed by 3156
Abstract
Multi-segmented bilayered Fe/Cu nanowires have been fabricated through the electrodeposition in porous anodic alumina membranes. We have assessed, with the support of micromagnetic simulations, the dependence of fabricated nanostructures’ magnetic properties either on the number of Fe/Cu bilayers or on the length of [...] Read more.
Multi-segmented bilayered Fe/Cu nanowires have been fabricated through the electrodeposition in porous anodic alumina membranes. We have assessed, with the support of micromagnetic simulations, the dependence of fabricated nanostructures’ magnetic properties either on the number of Fe/Cu bilayers or on the length of the magnetic layers, by fixing both the nonmagnetic segment length and the wire diameter. The magnetic reversal, in the segmented Fe nanowires (NWs) with a 300 nm length, occurs through the nucleation and propagation of a vortex domain wall (V-DW) from the extremities of each segment. By increasing the number of bilayers, the coercive field progressively increases due to the small magnetostatic coupling between Fe segments, but the coercivity found in an Fe continuous nanowire is not reached, since the interactions between layers is limited by the Cu separation. On the other hand, Fe segments 30 nm in length have exhibited a vortex configuration, with around 60% of the magnetization pointing parallel to the wires’ long axis, which is equivalent to an isolated Fe nanodisc. By increasing the Fe segment length, a magnetic reversal occurred through the nucleation and propagation of a V-DW from the extremities of each segment, similar to what happens in a long cylindrical Fe nanowire. The particular case of the Fe/Cu bilayered nanowires with Fe segments 20 nm in length revealed a magnetization oriented in opposite directions, forming a synthetic antiferromagnetic system with coercivity and remanence values close to zero. Full article
(This article belongs to the Special Issue Multifunctional Magnetic Nanowires and Nanotubes)
Show Figures

Figure 1

30 pages, 8026 KB  
Review
Multi-Segmented Nanowires: A High Tech Bright Future
by Da-Shuang Wang, Aiman Mukhtar, Kai-Ming Wu, Liyuan Gu and Xiaoming Cao
Materials 2019, 12(23), 3908; https://doi.org/10.3390/ma12233908 - 26 Nov 2019
Cited by 61 | Viewed by 4753
Abstract
In the last couple of decades, there has been a lot of progress in the synthesis methods of nano-structural materials, but still the field has a large number of puzzles to solve. Metal nanowires (NWs) and their alloys represent a sub category of [...] Read more.
In the last couple of decades, there has been a lot of progress in the synthesis methods of nano-structural materials, but still the field has a large number of puzzles to solve. Metal nanowires (NWs) and their alloys represent a sub category of the 1-D nano-materials and there is a large effort to study the microstructural, physical and chemical properties to use them for further industrial applications. Due to technical limitations of single component NWs, the hetero-structured materials gained attention recently. Among them, multi-segmented NWs are more diverse in applications, consisting of two or more segments that can perform multiple function at a time, which confer their unique properties. Recent advancement in characterization techniques has opened up new opportunities for understanding the physical properties of multi-segmented structures of 1-D nanomaterials. Since the multi-segmented NWs needs a reliable response from an external filed, numerous studies have been done on the synthesis of multi-segmented NWs to precisely control the physical properties of multi-segmented NWs. This paper highlights the electrochemical synthesis and physical properties of multi-segmented NWs, with a focus on the mechanical and magnetic properties by explaining the shape, microstructure, and composition of NWs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 7880 KB  
Article
Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations
by Faqi Diao, Thomas R. Walter, Federico Minati, Rongjiang Wang, Mario Costantini, Semih Ergintav, Xiong Xiong and Pau Prats-Iraola
Remote Sens. 2016, 8(10), 846; https://doi.org/10.3390/rs8100846 - 18 Oct 2016
Cited by 9 | Viewed by 9122
Abstract
Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA) or the North Anatolian Fault (Turkey). A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a [...] Read more.
Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA) or the North Anatolian Fault (Turkey). A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI) analysis of synthetic aperture radar (SAR) data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth) for the first time using satellite SAR interferometry (InSAR) technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms. Full article
Show Figures

Figure 1

Back to TopTop