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Highlights:

What are the main findings?

e  The Xiongpo anticline is characterized by a superimposed fault-fold belt in the central seg-ment,
with a simple shallow fault-related fold in its two plunging edge zones.

e A three-stage growth of the Xiongpo anticline has been proposed on the basis of a 3D fault model.

What is the implication of the main finding?

° Three stress fields have been deduced for the Xiongpo anticline evolution.

Abstract: The Xiongpo fault-fold belt shows prominent NE, ENE- and ~N-5-trending relief, which
resulted from multi-stage upper crustal shortening in the Longmen Shan piedmont during the
eastward growth of the eastern Tibetan Plateau. Previous studies have determined its 2D structural
configurations from seismic profiles and field-based geological cross-sections. Here, we extend this
analysis into the entire belt to explore the 3D structural evolution of this complex fault-fold belt
and have built a 3D regional fault model. The results reveal along-strike variation of subsurface
structural architecture of the Xiongpo fault-fold belt, which is characterized by transformation from a
complex superimposition of a deep fault-bend fold beneath a shallow structural wedge in the center
segment to a simple shallow fault-bend fold on both ends of the structure, and then to a trishear
fault propagation fold on the plunging edges. This structural transformation determines the contrast
between the NE-striking relief of the central segment, and the ENE- and ~N-S-striking relief in the
two plunging zones. We combine our results with published low-temperature thermochronology
and growth strata results to propose a three-stage evolution for the Xiongpo fault-fold belt that
closely relates with regional stress field changes, including a NE-striking fault under the NW-SE
compression between 40-25 Ma and 15-10 Ma, lateral propagation of the NE-striking fault and
initiation of ENE-striking fault by WNW-ESE compression from ~5-2 Ma, ~N-S fault under ~E-W
compression until the present. This work enhances our understanding of the stress field changes of
eastern Tibet since the Late Eocene. It also can serve as a typical case study deciphering 3D fault-fold
growth using seismic and geological imaging, which is helpful to understand 3D structural and
landscape evolutions of other complex fault-fold belts worldwide.

Keywords: Longmen Shan; Xiongpo anticline; fault-fold belt; upper crustal shortening; stress
field change
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1. Introduction

Mountain building processes have been intensively studied using critical taper the-
ory [1-3] and field evidence [4-7] over the past three decades. These pioneering scientists
pointed out that mountain building processes are attained by tectonic deformation that pro-
gressively involves the foreland basins from orogenic hinterland areas. Under the dynamic
control of the hinterland orogenic wedge, a series of new thrusts nucleate, propagating
both forwardly and laterally, producing topography that stands above the foreland basin.
Consequently, understanding the nature and three-dimensional (3D) tempo-spatial evolu-
tion of foreland fault-fold belts provides critical information that can be used to resolve
hinterland and foreland deformation [8].

The relationship between foreland fault-fold growth and surface uplift and its effects
on landscape evolution have been extensively studied, using theoretical studies [9,10],
numerical simulations [11-14], analogue models [1,15,16], and geomorphological stud-
ies [17-21]. Aided by more and more seismic imaging and/or geological cross sections,
different structural styles of fault-related folds [22] occur in subsurface structures within
contractional tectonic regions have been identified. In fault-bend fold theory, three end-
member kinematic models (e.g., fault-bend fold, fault propagation fold, and detachment
fold) have been raised to sketch relationships between subsurface geometry, deforma-
tion, cumulative fault slip, and surface uplift [22]. However, deciphering the detailed
subsurface structural architecture especially when complex 3D fault-folds growth occurs,
is still difficult. Moreover, a lack of high-resolution seismic data reaching enough depth
has additionally limited the precise constraints on subsurface structural architecture and
interactions among different structural levels [23-27].

The Xiongpo anticline is an east vergent, asymmetric, doubly plunging complex fault-
fold belt in the Longmen Shan fold-and-thrust belt, located on the eastern margin of the
Tibetan Plateau (Figure 1). The occurrence of the 2008 M, 7.9 Wenchuan and 2013 M,
6.6 Lushan earthquakes in this thrust fold belt demonstrates that there is ongoing upper
crustal shortening. Previous works have proposed two-dimensional structural styles of the
Xiongpo structure at specific locations using field investigations, seismic data, and balanced
cross-section method [28-32], but the regional 3D structural architecture and evolution of
the structure are still unclear. The Xiongpo anticline has undergone a multiphase evolu-
tionary history [32-34] and recorded ~7 km upper crustal shortening [30,32]. Moreover, it
shows significant along-strike difference in its axis direction [29], and therefore can serve
as a unique case to enhance our knowledge about 3D fault-fold growth.

The detailed goals of this study are to (1) explore the along-strike variation of structural
architecture of the Xiongpo fault-fold belt, (2) reconstruct 3D tempo-spatial evolution of
the Xiongpo fault-fold belt since the Late Eocene, and (3) determine the related stress field
conditions of eastern Tibet. To achieve these, we first constrain the structural architecture
of the Xiongpo structure using four seismic reflection profiles and four geological sections.
Then, we build a 3D fault model of the Xiongpo anticline to determine the geometry of the
underlying fault. Finally, based on the above results and combining with published analyses
of ages [33,34] and growth strata [31], we reconstruct the 3D tempo-spatial evolution
and stress field changes of the Xiongpo fault-fold belt and stress field changes, since the
Late Eocene.
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Figure 1. (a) Topography and main faults in and around the Tibetan Plateau. (b) Topography
hillshade map of eastern Tibet and the Longmen Shan showing its geologic setting, main faults, and
three phases of crustal deformations. Fault names: XSHF = Xianshuihe fault; LRBF = Longriba fault;
MJF = Minjiang fault; HYF = Huya fault; QCF = Qingchuan fault; WMF =Wenchuan-Maowen fault;
YBF = Yingxiu-Beichuan fault; PGF = Pengguan fault; WLF = Wulong fault; BXF = Baoxing fault;
RFBT = Range Front blind fault; PZF = Pengzhou fault; DYF = Dayi fault; QXF = Qiongxi fault;
XPF = Xiongpo fault; LQF = Longquan fault.

2. Geological Setting
2.1. Cenozoic Crustal Deformation of the Eastern Tibet

The eastern Tibetan Plateau is characterized by one of the steepest topographic gradi-
ents on Earth’s surface, partly because of the continuous convergence between the Indian
and Eurasian plates and subsequent eastward extrusion of the Tibetan Plateau in the Ceno-
zoic [35]. The lateral crustal extrusion in eastern Tibet is mainly accommodated by the
Longmen Shan fold-and-thrust belt to the east, the Xianshuihe fault to the south, and the
Kunlun and Min Shan faults to the north (Figure 1). Since the Late Eocene, three regional
rapid rock exhumation episodes have been determined from thermochronology, geology,
and geophysics around the eastern Tibetan Plateau ([31,36], and references therein).

The Longmen Shan fold-and-thrust belt, about 500 km long and 50-120 km wide,
characterized by four major parallel NE-striking right-lateral reverse and pure-thrusting
faults (from NW to SE, the Wenchuan-Maowen, Yingxiu-Beichuan, and Pengguan faults,
and the Range Front blind thrust) in the hinterland areas, and some shallow thrust fault-fold
belts in the foreland (including Longquan, Pengzhou, Dayi, Qiongxi, and Xiongpo structure)
(Figure 1). The Cenozoic deformation has been documented by growth strata in seismic
imaging [28,31] and rapid exhumation from low-temperature thermochronological results
(30-25 Ma and 15-10 Ma) [37-41]. The Xiongpo fault-fold belt is the only structure in the
entire Longmen Shan fold-and-thrust belt to record three phases of structural deformations
(40-25 Ma, 15-10 Ma, and ~5-2 Ma) [32]. This study will focus on this structure (Figure 1).

To the south of the Longmen Shan, many U-Pb ages and thermochronologic results
along the Xianshuihe fault reveal that high temperature metamorphism and rock rapid
exhumations occurred after 32-27 Ma and/or 13-9 Ma [42—44]. In the Min Shan, to the north
of the Longmen Shan, thermochronological ages constrain the initiation of exhumation to
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~10 Ma [45] with a second stage between 5 and 3 Ma [37], consistent with the records of
growth strata (~5-2 Ma, [31]). However, the differential exhumation history suggests that
the Longriba fault has experienced a rapid cooling since ~15-10 Ma [46] (Figure 1).

2.2. Geomorphological and Geological Settings of the Xiongpo Structure

The Xiongpo structure, about 90 km long and 12 to 15 km wide, consists of three
segments, including prominent NE-trending relief in the central segment, as well as an
ENE- and ~N-5-trending relief in the two plunging zones (Figure 2). According to the
geological mapping, each set of relief corresponds to a west verging NE-striking thrust
fault (F2) in the central segment, and two NEE- and ~N-S-striking blind thrust faults (F3
and F4, respectively) in the two plunging zones (Figure 2).
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Figure 2. Geological map of the Xiongpo structure and adjacent regions (location shown in Figure 1).
The map is modified from [31]. The seismic reflection profiles and geological sections used in this
study are shown as black and blue lines, respectively. The emerged and blind thrust faults are
shown as red solid and dotted lines, respectively. XPA = Xiongpo anticline; QXA = Qiongxi anticline;
SSCA = Sansuchang anticline. T3 = Upper Triassic; J, J», and J3 = Lower, Middle, and Upper Jurassic;
K and K; = Lower and Upper Cretaceous; E = Eocene; Q = Pleistocene and Holocene.

Late Mesozoic sedimentary rocks, including upper Triassic, Jurassic, and Cretaceous
fluvial and lacustrine sandstones, which are exposed in the core of the fault-fold belt. In the
eastern limb, a continuous lower Jurassic to Eocene section is well exposed (Figures 2 and 3).
Moreover, unconsolidated middle Pleistocene sediments are exposed around the Xiongpo
structure. Note that there are some secondary thrust faults emerged as well, including
the longer NNE- and /or ~N-S-striking fault (~20 km in length) (Figure 2) and two NE-
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striking faults with 1.7 &= 0.2 m slip (Figure 4d) in the central segment, as well as several
~N-S-striking faults with 0.8 m to 10.8 m minimum-accumulated slip (Figure 4a—c).

Figure 3. Field photos show Middle and Upper Jurassic, as well as Upper Cretaceous strata in
different positions of Xiongpo structure from NE to SW (locations are shown in Figure 2).

=
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Figure 4. Field photos show outcropping secondary thrust faults in the intersection between the
central and northern segments of the Xiongpo structure (locations are shown in Figure 2). The fault
geometry and minimum-accumulated slip are interpreted by the directly observed dip domains and
fault cutoffs.
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Hubbard and Shaw [30] and Li et al. [32] have quantified the accumulated crustal
shortening of the Xiongpo structure, and found that during its three phases of deformation
it accommodated more than 7 km, the maximum value in the Longmen Shan piedmont
(summarized by [31,32]). Thus, the Xiongpo structure is a unique structure in that it has
accommodated the maximum upper crustal shortening and experienced complex structural
evolution in the foreland of the Longmen Shan.

3. The Structural Architecture of the Xiongpo Structure

In order to study the along-strike structural architecture of the Xiongpo structure,
we present here four seismic reflection profiles (A-D in Figures 2 and 5) and four geo-
logical sections (1-4 in Figures 2 and 6), oriented nearly perpendicular to the fold strikes.
These seismic data were collected and processed by PetroChina using the post-stack time-
migration technique. Then, we convert the seismic data with time domain into depth
utilizing layered velocity model [47].

Figure 5. Interpreted seismic reflection profiles using the quantitative theory of fault-related fold-
ing [22] (locations are shown in Figure 2). The minimum total slips are indicated, which approximate
to the width of the backlimb kink band. The number of the main thrust faults (F1-F4) and four
detachment layers (D1-D4) are shown in these profiles, corresponding to the geological mapping
(Figure 2).
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Figure 6. Interpreted geological sections based on field investigations, neighboring seismic profiles
(Figure 5), and the quantitative theory of fault-related folding [22] (locations are shown in Figure 2).
The minimum total slips are indicated, which approximate to the width of the backlimb kink band.

The number of the main thrust faults and detachment layers are shown in the profile, corresponding
to the geological mapping (Figure 2).

Horizon calibrations on these profiles are associated with stratigraphic constraints
of petroleum wells and surface geological maps. These geological sections are drawn
integrating the field investigations (Figures 3 and 4), seismic profiles, and geological
mapping (Figure 2). Interpreted thrust fault and related folds are based on the theory of
contractional fault-related folds [22]. According to their structural style, as well as strikes

of thrust faults and related folds, we divided the structure into southern, central, and
northern segments.

3.1. Central Segment

Two representative seismic reflection profiles (B and C in Figure 2), and three geological
sections (1-3 in Figure 2) are used to illustrate the structural architecture of the central
segment of the Xiongpo fault-fold belt. Profile C cuts across the highest point of the
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topography of the entire structure, and shows a superimposed deeper contractional fault-
bend fold [48] above F1 and shallower multi-bend back-thrust fault (F2) with two splay
thrust faults, separated by the middle detachment layer (D2) (Figure 5C). Moreover, profile
C records the maximum fault slip with 4.7 &+ 0.2 km (approximate to the width of the
backlimb kink band, 0.2 km represents measurement error) of the F2. Section 2, about
~10 km to the northeast, displays a similar structural architecture at depth to profile C, with
two fault bends and 2.4 + 0.2 km slip of the F2 and without splay thrust fault (Figure 6b).
Section 3, about ~10 km to the southwest to profile C, only shows a fault bend fold above
the D2, which is controlled by the back-thrust fault (F2) with 2.8 & 0.2 km slip (Figure 6c¢).

To the north of the central segment of the Xiongpo structure, profile B displays an
asymmetric fold characterized by a steeply dipping forelimb, a gently dipping backlimb,
and a forelimb trishear zone. Thus, we consider the structure to be mainly characterized by a
trishear fault propagation fold [49] above the D2, which is controlled by the back-thrust fault
(F2) with 1.0 £ 0.1 km slip (Figure 5b). Section 1, about ~10 km to the southwest of profile
B, presents a similar structural architecture at the depth of profile B, with 2.0 &= 0.2 km slip
of the F2 and without a splay thrust fault (Figure 6b).

In general, the structural architecture of the central segment of the Xiongpo structure
displays along-strike differences, which transfers a complex superimposed deep fault-bend
fold above F1 and a shallower structural wedge to a simple shallow fault-bend fold, and
then to a trishear fault propagation fold. Moreover, the total amount of slip on the fault
F2 also shows along-strike variations, decreasing toward northeast and southwest from a
maximum in profile C (4.7 £ 0.2 km) (Figures 5 and 6).

3.2. Southern Segment

In contrast to the central segment, the southern segment of the Xiongpo structure
shows a relatively simple geometry at depth. Profile D displays a gentler, wider fault
bend fold above the D2, which is controlled by the back-thrust fault (F3) with 1.4 £ 0.2 km
slip (Figure 5d). Section 4, about ~15 km to the southwest, displays a similar structural
architecture at depth to profile D, with 1.5 £ 0.2 km slip of the F2 (Figure 6d).

3.3. Northern Segment

The northern segment has a coherent structural architecture at a depth that is different
from the northern central segment (i.e., profile B and Section 1). Profile A displays an
asymmetric fold characterized by a steeply dipping forelimb, a gently dipping backlimb,
and a forelimb trishear zone. Thus, we consider the structure to be mainly characterized by
a trishear fault propagation fold above the D2, which is controlled by the back-thrust fault
(F4) with 0.6 & 0.1 km slip (Figure 5a).

Overall, the cumulative fault slip reached the maximum value of 4.7 &= 0.2 km in profile
C, decreasing toward southwest to one-third in the south segment, and then northeast to
one-eighth in the northern segment, suggesting a complex fault-fold growth in the entire
Xiongpo structure (Figures 5 and 6).

4. The 3D Fault Model of Xiongpo Structure
4.1. The 3D Structural Modeling Method

We interpreted four seismic reflection profiles (Figure 5) and four geological sections
(Figure 6), and integrated field observations (Figures 3 and 4), geological mapping ([28],
Figure 2), and a 30 m digital elevation model to build a complete 3D fault model of
the Xiongpo structure (Figure 7) using GoCAD software [50]. There are three steps to
reconstructing the geometric relationships of the complex faults and detachments. First, the
data points (x, y, and z) of the faults and detachments were extracted from the interpreted
seismic and geological imaging using the WGS 1984 UTM Zone 48. Then, the faults and
detachments are interpolated as irregular triangulated surfaces. Last, the surfaces of the
faults and detachments were smoothed by a Kriging interpolation. Thus, the 3D fault model
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provides a visual perspective for understanding the subsurface 3D structural architecture
of Xiongpo fold-fault belt (Figure 7).

Dip (deg)
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3 -+
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Figure 7. Interpreted 3D fault model of the Xiongpo structure. The model is extrapolated laterally
from four seismic profiles, four geological sections, a 90 m-resolution SRTM digital elevation, and field
observations, to build a 3D fault model using GoCAD [50]. The model shows the top topographic
model, three main thrust faults (F2 F3, and F4), four detachment layers (D1, and D2), and a number
of pointsets (fault scarps of the F2). The topographic model displays the calculated dip angle. See the
text for details. Abbreviations: F, fault; D, detachment.

4.2. Model Results

The completed 3D fault model (Figure 7) consists of a topographic model, three main
thrust faults (F2, F3, and F4), four detachment layers (D1, D2, D3, and D4), and a number
of fault scarps of F2. The 3D model clearly revealed the spatial relationship between the
deep (D1) and shallow along-strike differences in fault-plane geometries (i.e., F2) of the
three thrust faults (F2, F3 and F4). The 3D fault model reveals more detailed along-strike
variations of subsurface structural architecture of Xiongpo fold-fault belt. First of all,
the structure comprises the deep and shallow thrust faults (F2 F3, and F4), which are
separated by the regional detachment layer (D2), rooted in the Permian-Triassic boundary
(Figures 5 and 6). The deeper NE-striking fault and detachment (D1) is only observed
in the middle part of the central segment (possibly because this is the only location with
deep seismic lines). In the central segment, a ~45 km-long NE-striking fault F2 developed
above the D2 and propagated upward to the surface or near surface. To the south of central
segment, a ~25 km-long NNE-striking fault F3 nucleated and grew above the D2 in the
southern segment, whereas to the north, a ~15 km-long ~N-5S-striking fault F4 developed
(Figures 5-7).
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5. Discussion
5.1. 3D Structural and Landscape Evolutions of the Xiongpo Structure

The combination of field investigations, seismic profiles, structural sections, 3D
fault model, as well as published low-temperature thermochronology [33,34] and growth
strata [31] results, allow us to refine the three-stage structural and landscape evolutions of
the Xiongpo structure since the Late Eocene [32].

Stage A is between 40-25 Ma and 15-10 Ma, characterized by NE-striking F1 and
F2 active. In this stage, the initial Xiongpo structure was developed, about 25 km long,
~10 wide, and ~2 km in height (Figure 8a), which was primarily controlled by a super-
imposed deeper NE-striking fault-bend fold (F1) and shallower east-verging NE-striking
multi-bend back-thrust fault (F2) (Figure 5c). The F2 and detachment fault D2 together
form a structural wedge (Figure 5c).

(a) Stage A: Between 4025 Ma and 15-10 Ma (b) Stage B: Between 15-10 Ma and ~5-2 Ma

—_—_—_—

(c) Stage C: Between ~5-2 Ma and present

Shortening i
. . 7
direction _-

—_—— ————

~
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— 7
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Figure 8. Reconstructed three-stage structural and landscape evolution processes of the Xiongpo
structure since the Late Eocene. (a) Stage A (between 40-25 Ma and 15-10 Ma): NE-striking F1 and
F2 active. (b) Stage B (between 15-10 Ma and ~5-2 Ma): NE-striking F2 and NNE-striking F3 active.
(c) Stage C (between ~5-2 Ma and present) ~N-S-striking F4 active. (d) Present topography of the
eroded Xiongpo structure. See the text for details.
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The second stage B is between 15-10 Ma and ~5-2 Ma, characterized by active
NE-striking F2 and NNE-striking F3. The Xiongpo structure underwent lateral and bi-
directional growth along the NE-striking F2, and developed a 45 km long, ~15 wide, and
2.8 km high anticlinal structure in the central segment (Figure 8b). At that time, a new
shallower east-verging NNE-striking back thrust fault (F3), and developed a gentler, wider
fault bend fold in the southern segment, about 25 km long, ~10 wide, and ~1.2 km high
(Figure 8b). This complex thrust-fold pattern is consistent with the geological mapping,
which also shows that the older NE-striking fault-fold is cut by the younger NNE-striking
secondary fault in the central segment (Figure 2).

The third stage C is characterized by ~N-S-striking F4 active after ~5-2 Ma. In the last
stage, another new shallower east-verging ~N-S-striking back thrust fault (F4) initiated,
and developed a trishear fault-propagation fold with much steeper and narrower forelimb
than backlimb in the northern segment, about 15 km long, ~10 wide, and ~1.2 km high
(Figure 8c). The F4 and detachment fault D2 together form a structural wedge (Figure 5a).
The younger NNE-striking secondary fault rotates to a ~N-S-striking and cut the older
NE-striking fault-fold (Figure 2). Moreover, the ~N-S-striking fault-fold belt absorbed
less shortening than the NE-striking fault-fold (Figures 4 and 5), suggesting that it acts
as the youngest structure in the region. When comparing the present topography (the
highest point of ~1.0 km, Figure 8d) of the Xiongpo structure with the three complete
anticlines (the maximum uplift of ~2.8 km, [32]) in the stage C (Figure 8c), we reveal
that the maximum elevation has been eroded by ~1.8 km. This value is consistent with
1-4 km of regional-scale denudation within the western Sichuan Basin constrained by
low-temperature thermochronology [33].

5.2. What Causes Triple-Stage Fault-Fold Growth of the Xiongpo Structure?

Along-strike differences of fault-fold belts in contractional tectonic settings have been
interpreted by two contrasting models: local stress field change or rotation [51], and
regional block rotation. Our 3D fault model of the Xiongpo fault-fold belt reveals along-
strike difference of the fault strikes, characterized by NE-striking faults in the central
segment, whereas NEE- and ~N-S-striking faults in the two plunging zones (Figure 7),
reflect a rather complex evolution processes developed as a result of the changes of stress
directions during the fault-fold belt growth.

Here, we show a compilation of new and previously published data to discuss the con-
trolling factor of three-stage fault-fold growths of the Xiongpo structure, and consider the
local stress field change may be the primary controlling factor due to the following reasons:

Field investigations and subsurface structural architecture studies reveal that these
thrust faults and fault-fold belts (including Longquan, Pengzhou, Dayi, Qiongxi, and
Xiongpo structure) in the Longmen Shan fold-and-thrust belt share comparable kinematics,
reflecting two stress field changes in the eastern Tibet since late Eocene [31], and references
therein, Figure 8). The first change corresponds to NNE-striking thrust fault developed and
truncated both limbs of the NE-striking fault-fold belts, likely the Xiongpo, Dayi, Longquan
structures [31], which imply WNW-directed crustal shortening between 15-10 Ma and
~5-2 Ma (Figure 8b). The second change is consistent with ~N-S striking thrust fault growth
that cuts both limbs of the NE- and/or NNE-striking fault-fold belts, which suggests an
~E-W orientation of the maximum compressive stress after ~5-2 Ma [31,52] (Figure 8c).

It should be noted that there is non-synchronous crustal deformation and movement
of the Sichuan Basin and neighboring regions during the Cenozoic, reflecting that the basin
undergoes negligible clockwise or anticlockwise rotation, similarly to the Ordos Basin to
the north [53]. There are three stages of structural deformations (40-25 Ma, 15-10 Ma, and
~5-2 Ma) in the eastward extrusion zone of the eastern Tibet, including Longmen Shan
fold-and-thrust belts, Min Shan, Xianshuihe fault, and Longriba fault. However, only the
Late Eocene—Oligocene (~35-28 Ma) stage of crustal shortening has been recorded in the
eastern Sichuan Basin, suggesting a non-synchronous crustal deformation occurred around
the Sichuan Basin [54,55]. Moreover, paleomagnetic studies reveal that the Sichuan Basin
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and its margins suffered un-matched crustal movement during the Cenozoic ([53,54], and
references therein). Wang [56] proposed that the Sichuan Basin suffered counterclockwise
rotation since ~13 Ma, dragged by the left-lateral movement along the Xianshuihe fault.
However, this outcome does not coincide with the other paleomagnetic results of the
Cretaceous and Paleogene within the western Sichuan Basin. Furthermore, Tong [57]
suggested that the basin experienced clockwise rotational deformation at early Miocene,
caused by the combination of northeastward escaping of the Songpan-Ganzi block and the
counterclockwise rotation of the south China block. These contradictory conclusions show
that the amount and direction of rotation of the Sichuan Block is still an ongoing matter
of debate.

Thus, we propose that the three-stage fault-fold growths in the Longmen Shan pied-
mont is due to two stress field changes in the eastern Tibet since Late Eocene with little/no
rigidly rotation of the Sichuan basin at this period. The complex crustal deformation and
dynamic background may be related to the combination of the southeastward growth of the
Tibetan Plateau along the Xianshuihe fault and northeastward escape of the Songpan-Ganzi
block, but this model needs more data to be confirmed.

6. Conclusions

Based on interpreted seismic profiles and geological sections, combined with field
investigations and a 3D fault model, we provide a case study that displays the along-strike
variation of structural architecture and 3D tempo-spatial evolution of the Xiongpo fault-fold
belt, and we draw the following conclusions:

(1) The Xiongpo anticline is characterized by a transition from a structural superposition
of deep fault-bend fold and shallow structural wedge in the central segment to a
simple shallow fault-bend fold, and then to a trishear fault propagation fold in two
plunging zones.

(2) The Xiongpo anticline experiences a three-stage evolution processes, beginning with
a NE-striking fault that was active under the NW-SE compression between 40-25 Ma
and 15-10 Ma, followed by lateral propagation of NE-striking fault and the initiation of
ENE-striking fault till ~5-2 Ma, and finally ~N-S fault active under ~E-W compression
until present.

(3) The presented fault-fold growth history of the Xiongpo structure reveals two stress
field changes in the eastern Tibet since Late Eocene, which may be related to the
combination of the southeastward growth of the Tibetan Plateau along the Xianshuihe
fault and northeastward escape of the Songpan—Ganzi block.
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