Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = multi-hop ad hoc networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3311 KiB  
Article
A VANET, Multi-Hop-Enabled, Dynamic Traffic Assignment for Road Networks
by Wilmer Arellano and Imad Mahgoub
Electronics 2025, 14(3), 559; https://doi.org/10.3390/electronics14030559 - 30 Jan 2025
Cited by 2 | Viewed by 1469
Abstract
Traffic congestion imposes burdens on society and individuals. In 2022, the average congestion cost per auto commuter in the USA was USD1259. New possibilities to increase traffic efficiency are now available as vehicles can interact using Vehicular Ad Hoc Network (VANET) systems, a [...] Read more.
Traffic congestion imposes burdens on society and individuals. In 2022, the average congestion cost per auto commuter in the USA was USD1259. New possibilities to increase traffic efficiency are now available as vehicles can interact using Vehicular Ad Hoc Network (VANET) systems, a subset of the Internet of Vehicles (IoV). The traffic assignment problem deals with road network traffic optimization. It is a complex and challenging problem. A few solutions incorporating VANET technology have been presented; most are centralized or depend on infrastructure. In previous work, we introduced Road-ACO, an ant colony optimization (ACO), single-hop, decentralized, infrastructure-less, VANET solution. In this paper, we propose a new multi-hop-enabled, decentralized, ant-colony-inspired algorithm for dynamic highway traffic assignment. The algorithm works for large road networks and requires no infrastructure. We develop Veins framework-based simulations to evaluate the algorithm’s performance. The results indicate that the proposed algorithm consistently outperforms Road-ACO and performs optimally on road segments up to 4000 m long, with improvements of up to 40% on average travel time. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Internet of Vehicles)
Show Figures

Figure 1

14 pages, 480 KiB  
Article
Routing Enhancement in MANET Using Particle Swarm Algorithm
by Ohood Almutairi, Enas Khairullah, Abeer Almakky and Reem Alotaibi
Automation 2024, 5(4), 630-643; https://doi.org/10.3390/automation5040036 - 22 Dec 2024
Cited by 1 | Viewed by 1294
Abstract
A Mobile ad hoc Network (MANET) is a collection of wireless mobile nodes that temporarily establish a network without centralized administration or fixed infrastructure. Designing the routing of adequate routing protocols is a major challenge given the constraints of battery, bandwidth, multi-hop, mobility, [...] Read more.
A Mobile ad hoc Network (MANET) is a collection of wireless mobile nodes that temporarily establish a network without centralized administration or fixed infrastructure. Designing the routing of adequate routing protocols is a major challenge given the constraints of battery, bandwidth, multi-hop, mobility, and enormous network sizes. Recently, Swarm Intelligence (SI) methods have been employed in MANET routing due to similarities between swarm behavior and routing. These methods are applied to obtain ideal solutions that ensure flexibility. This paper implements an enhanced Particle Swarm Optimization (EPSO) algorithm that improves MANET performance by enhancing the routing protocol. The proposed algorithm selects the stable path by considering multiple metrics such as short distance, delay of the path, and energy consumption. The simulation results illustrate that the EPSO outperforms other existing approaches regarding throughput, PDR, and number of valid paths. Full article
Show Figures

Figure 1

16 pages, 10064 KiB  
Article
A Wireless Ad Hoc Network Communication Platform and Data Transmission Strategies for Multi-Bus Instruments
by Lushuai Qian, Kexin Gu, Yaqiong Fu, Yuli Shen and Suan Xu
Electronics 2024, 13(18), 3596; https://doi.org/10.3390/electronics13183596 - 10 Sep 2024
Cited by 1 | Viewed by 1179
Abstract
As automatic test technology advances, the number of programmable instruments in a single test system increases. Traditional wired communication methods have a limited range and involve complex cable layouts. Single-function wireless converters provide a viable alternative, but they have limitations. These include complicated [...] Read more.
As automatic test technology advances, the number of programmable instruments in a single test system increases. Traditional wired communication methods have a limited range and involve complex cable layouts. Single-function wireless converters provide a viable alternative, but they have limitations. These include complicated configuration, issues with multi-system collaboration, and data blocking. This paper proposes a wireless ad hoc network platform for multi-bus instruments based on a low-cost ESP-12H WiFi module. The platform supports GPIB, RS232, RS485, and CAN bus interface instrument access. It features easy configuration, ad hoc networking, and self-repairing capabilities. A relay multi-hop network with a tree topology expands capacity and coverage. Additionally, a dynamic window-receiving mode and an improved multi-priority queue ensure data transmission integrity. The experimental results show that the platform’s networking time is less than 10 s, and the coverage range reaches 50 m in complex indoor environments. It also shows good stability when running for a long time. However, due to hardware and software design limitations, the actual upload speeds fall short of the theoretical values. For example, RS232 and RS485 are about 10% slower than the theoretical values, and GPIB is about 80% slower. Further optimization is required in the future. Full article
Show Figures

Figure 1

26 pages, 3806 KiB  
Article
Proposed Supercluster-Based UMBBFS Routing Protocol for Emergency Message Dissemination in Edge-RSU for 5G VANET
by Maath A. Albeyar, Ikram Smaoui, Hassene Mnif and Sameer Alani
Computers 2024, 13(8), 208; https://doi.org/10.3390/computers13080208 - 19 Aug 2024
Cited by 3 | Viewed by 1222
Abstract
Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dissemination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed mobility of VANET and [...] Read more.
Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dissemination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed mobility of VANET and the attenuation of the wireless signal. However, poor network design and high vehicle mobility are the two most difficult problems that affect VANET’s network performance. The real-time traffic situation and network dependability will also be significantly impacted by route selection and message delivery. Many of the current works have undergone studies focused on forwarder selection and message transmission to address these problems. However, these earlier approaches, while effective in forwarder selection and routing, have overlooked the critical aspects of communication overhead and excessive energy consumption, resulting in transmission delays. To address the prevailing challenges, the proposed solutions use edge computing to process and analyze data locally from surrounding cars and infrastructure. EDGE-RSUs are positioned by the side of the road. In intelligent transportation systems, this lowers latency and enhances real-time decision-making by employing proficient forwarder selection techniques and optimizing the dissemination of EMs. In the context of 5G-enabled VANET, this paper introduces a novel routing protocol, namely, the supercluster-based urban multi-hop broadcast and best forwarder selection protocol (UMB-BFS). The improved twin delay deep deterministic policy gradient (IT3DPG) method is used to select the target region for emergency message distribution after route selection. Clustering is conducted using modified density peak clustering (MDPC). Improved firefly optimization (IFO) is used for optimal path selection. In this way, all emergency messages are quickly disseminated to multiple directions and also manage the traffic in VANET. Finally, we plotted graphs for the following metrics: throughput (3.9 kbps), end-to-end delay (70), coverage (90%), packet delivery ratio (98%), packet received (12.75 k), and transmission delay (57 ms). Our approach’s performance is examined using numerical analysis, demonstrating that it performs better than the current methodologies across all measures. Full article
Show Figures

Figure 1

23 pages, 38781 KiB  
Article
Multi-Objective Deployment of UAVs for Multi-Hop FANET: UAV-Assisted Emergency Vehicular Network
by Haoran Li, Xiaoyao Hao, Juan Wen, Fangyuan Liu and Yiling Zhang
Drones 2024, 8(6), 262; https://doi.org/10.3390/drones8060262 - 13 Jun 2024
Cited by 2 | Viewed by 1881
Abstract
In the event of a sudden natural disaster, the damaged communication infrastructure cannot provide a necessary network service for vehicles. Unfortunately, this is the critical moment when the occupants of trapped vehicles need to urgently use the vehicular network’s emergency service. How to [...] Read more.
In the event of a sudden natural disaster, the damaged communication infrastructure cannot provide a necessary network service for vehicles. Unfortunately, this is the critical moment when the occupants of trapped vehicles need to urgently use the vehicular network’s emergency service. How to efficiently connect the trapped vehicle to the base station is the challenge facing the emergency vehicular network. To address this challenge, this study proposes a UAV-assisted multi-objective and multi-hop ad hoc network (UMMVN) that can be used as an emergency vehicular network. Firstly, it presents an integrated design of a search system to find a trapped vehicle, the communication relay, and the networking, which significantly decreases the UAV’s networking time cost. Secondly, it presents a multi-objective search for a trapped vehicle and navigates UAVs along multiple paths to different objectives. Thirdly, it presents an optimal branching node strategy that allows the adequate use of the overlapping paths to multiple targets, which decreases the networking cost within the limited communication and searching range. The numerical experiments illustrate that the UMMVN performs better than other state-of-the-art networking methods. Full article
(This article belongs to the Special Issue UAV-Assisted Intelligent Vehicular Networks 2nd Edition)
Show Figures

Figure 1

21 pages, 4594 KiB  
Article
Multiple-Junction-Based Traffic-Aware Routing Protocol Using ACO Algorithm in Urban Vehicular Networks
by Seung-Won Lee, Kyung-Soo Heo, Min-A Kim, Do-Kyoung Kim and Hoon Choi
Sensors 2024, 24(9), 2913; https://doi.org/10.3390/s24092913 - 2 May 2024
Cited by 2 | Viewed by 1810
Abstract
The burgeoning interest in intelligent transportation systems (ITS) and the widespread adoption of in-vehicle amenities like infotainment have spurred a heightened fascination with vehicular ad-hoc networks (VANETs). Multi-hop routing protocols are pivotal in actualizing these in-vehicle services, such as infotainment, wirelessly. This study [...] Read more.
The burgeoning interest in intelligent transportation systems (ITS) and the widespread adoption of in-vehicle amenities like infotainment have spurred a heightened fascination with vehicular ad-hoc networks (VANETs). Multi-hop routing protocols are pivotal in actualizing these in-vehicle services, such as infotainment, wirelessly. This study presents a novel protocol called multiple junction-based traffic-aware routing (MJTAR) for VANET vehicles operating in urban environments. MJTAR represents an advancement over the improved greedy traffic-aware routing (GyTAR) protocol. MJTAR introduces a distributed mechanism capable of recognizing vehicle traffic and computing curve metric distances based on two-hop junctions. Additionally, it employs a technique to dynamically select the most optimal multiple junctions between source and destination using the ant colony optimization (ACO) algorithm. We implemented the proposed protocol using the network simulator 3 (NS-3) and simulation of urban mobility (SUMO) simulators and conducted performance evaluations by comparing it with GSR and GyTAR. Our evaluation demonstrates that the proposed protocol surpasses GSR and GyTAR by over 20% in terms of packet delivery ratio, with the end-to-end delay reduced to less than 1.3 s on average. Full article
(This article belongs to the Special Issue Advanced Vehicular Ad Hoc Networks: 2nd Edition)
Show Figures

Figure 1

16 pages, 231 KiB  
Article
Analysing the Performance of a Trust-Based AODV in the Presence of a Flooding Attack
by Ali Alzahrani and Nigel Thomas
Appl. Sci. 2024, 14(7), 2874; https://doi.org/10.3390/app14072874 - 29 Mar 2024
Cited by 1 | Viewed by 1320
Abstract
Mobile ad hoc networks (MANETs) are wireless multi-hop networks that do not rely on any fixed infrastructure, unlike traditional networks. Nodes in MANETs are formed dynamically and are free to move in any direction at variable speeds. The special characteristics of MANETs make [...] Read more.
Mobile ad hoc networks (MANETs) are wireless multi-hop networks that do not rely on any fixed infrastructure, unlike traditional networks. Nodes in MANETs are formed dynamically and are free to move in any direction at variable speeds. The special characteristics of MANETs make them vulnerable to flooding attacks, which can have a negative impact on their performance. Moreover, due to their nature, employing solutions designed for traditional networks is not feasible. One potential solution to enhance the performance of MANETs in the face of network attacks is to implement trust management. This paper evaluates the performance of Ad hoc On-Demand Distance Vector (AODV) Routing in the presence of a flooding attack. We propose a direct trust management scheme to detect and isolate malicious nodes and implement this scheme on AODV. We name the modified protocol Trusted AODV (TAODV) and, finally, compare the performance of AODV and TAODV when both are under a flooding attack to measure the improvement achieved by our suggested scheme. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges
by Thomas Devred, Martine Wahl and Patrick Sondi
Electronics 2024, 13(3), 572; https://doi.org/10.3390/electronics13030572 - 31 Jan 2024
Viewed by 1083
Abstract
Sixth-generation (6G) announcements promise the best performance not only for latency but also for the number of connected objects. These characteristics particularly suit intelligent transport system (ITS) applications involving a large number of moving vehicles with stringent latency constraints. Moreover, in the 6G [...] Read more.
Sixth-generation (6G) announcements promise the best performance not only for latency but also for the number of connected objects. These characteristics particularly suit intelligent transport system (ITS) applications involving a large number of moving vehicles with stringent latency constraints. Moreover, in the 6G era, these applications will often operate while relying on direct cooperation and exchanges between vehicles, in addition to centralized services through a telecommunication infrastructure. Therefore, addressing collaborative intelligence for ad hoc routing protocols that ensure efficient management of multihop vehicle-to-vehicle communications is mandatory. Among the numerous organization models proposed in the literature, the chain–branch–leaf (CBL), a virtual backbone-like model, has demonstrated best performance regarding latency against the state-of-the-art approaches. However, its structure, which lacks redundancy, may lead to higher data loss in the case of the failure of one of the relaying branch nodes. This study investigated how the multipoint relay (MPR) technique—which is intrinsically redundant—used in the optimized link state routing (OLSR) protocol can be efficiently adapted to the road traffic context, especially by restricting MPR selection to a single traffic flow direction (TFD-OLSR). The simulation results confirmed that CBL-OLSR obtains the least end-to-end delay for various types of application traffic due to its efficient reduction in the number of relays and the amount of routing traffic. However, despite higher routing traffic, TFD-OLSR improves the delivery rate, especially for more than two-hop communications, thus demonstrating the benefits of its redundancy property. Full article
Show Figures

Figure 1

27 pages, 612 KiB  
Article
An Emergency Message Routing Protocol for Improved Congestion Management in Hybrid RF/VLC VANETs
by Noha Hassan, Xavier Fernando and Isaac Woungang
Telecom 2024, 5(1), 21-47; https://doi.org/10.3390/telecom5010002 - 25 Dec 2023
Cited by 6 | Viewed by 2714
Abstract
Unexpected traffic incidents cause safety concerns and intense traffic congestion on crowded urban road networks. Vehicular ad-hoc network (VANET)-aided Intelligent Transport Systems (ITS) aim to mitigate these risks through timely dissemination of alert messages. However, conventional Radio frequency (RF) mobile ad-hoc routing protocols [...] Read more.
Unexpected traffic incidents cause safety concerns and intense traffic congestion on crowded urban road networks. Vehicular ad-hoc network (VANET)-aided Intelligent Transport Systems (ITS) aim to mitigate these risks through timely dissemination of alert messages. However, conventional Radio frequency (RF) mobile ad-hoc routing protocols are ill-suited for dynamic VANET environments due to high mutual interference, packet collisions, high end-to-end delay from frequent route discoveries, and periodic beaconing requirements. Fortunately, the quickly emerging Visible Light Communications (VLC) provide complementary short-range connectivity with high bandwidth and low interference. This paper proposes an efficient adaptive routing protocol for emergency messages in dense VANET scenarios leveraging a hybrid RF/VLC system. When an incident or congestion happens, the source vehicle disseminates the information to the incoming vehicles as quickly as possible using a combination of VLC and RF communication networks. Multi-hop relays extend the connectivity if the direct links are blocked. The coverage area is partitioned into zones based on road segments, intersections, and traffic flows. The Road Side Units (RSU)s are intelligently assigned to zones and they analyze the historical traffic data to characterize each zone and decide a response strategy. We also propose a congestion detection scheme that utilizes traffic simulations to forecast the clearance times under different response strategies. The highest-scoring strategy is selected based on the predicted impacts on travel time, emissions, and driver stress levels. The proposed algorithm adaptively uses the selected strategy to proactively alleviate the predicted congestion through optimized routing and control. Overall, the protocol maximizes safety and efficiency during emergencies by leveraging the hybrid RF/VLC, incorporating real-time congestion forecasting and dynamic rerouting into the response strategies. Full article
Show Figures

Figure 1

10 pages, 373 KiB  
Article
PUFGuard: Vehicle-to-Everything Authentication Protocol for Secure Multihop Mobile Communication
by Fayez Gebali and Mohamed K. Elhadad
Computers 2023, 12(11), 233; https://doi.org/10.3390/computers12110233 - 14 Nov 2023
Cited by 1 | Viewed by 2662
Abstract
Vehicle area networks (VANs) encompass a spectrum of communication modes, including point-to-point visible light communication, 5G/6G cellular wireless communication, and Wi-Fi ad hoc multihop communication. The main focus of this paper is the introduction and application of physically unclonable functions (PUFs) as a [...] Read more.
Vehicle area networks (VANs) encompass a spectrum of communication modes, including point-to-point visible light communication, 5G/6G cellular wireless communication, and Wi-Fi ad hoc multihop communication. The main focus of this paper is the introduction and application of physically unclonable functions (PUFs) as a pivotal element in secure key generation, authentication processes, and trust metric definition for neighboring vehicles. The multifaceted protocols proposed herein encompass comprehensive security considerations, ranging from authentication and anonymity to the imperative aspects of the proof of presence, freshness, and ephemeral session key exchanges. This paper provides a systematic and comprehensive framework for enhancing security in VANs, which is of paramount importance in the context of modern smart transportation systems. The contributions of this work are multifarious and can be summarized as follows: (1) Presenting an innovative and robust approach to secure key generation based on PUFs, ensuring the dynamic nature of the authentication. (2) Defining trust metrics reliant on PUFs to ascertain the authenticity and integrity of proximate vehicles. (3) Using the proposed framework to enable seamless transitions between different communication protocols, such as the migration from 5G/6G to Wi-Fi, by introducing the concept of multimodal authentication, which accommodates a wide spectrum of vehicle capabilities. Furthermore, upholding privacy through the encryption and concealment of PUF responses safeguards the identity of vehicles during communication. Full article
(This article belongs to the Special Issue IoT: Security, Privacy and Best Practices 2024)
Show Figures

Figure 1

16 pages, 1314 KiB  
Article
Adaptive Multi-Path Routing Protocol in Autonomous Vehicular Networks
by Joon Yoo
Mathematics 2023, 11(21), 4426; https://doi.org/10.3390/math11214426 - 25 Oct 2023
Viewed by 1437
Abstract
Vehicular ad hoc networks consist of self-organizing nodes using multi-hop wireless links for communication without any infrastructure support. Traditionally, ad hoc routing protocols use the minimum hop count for their routing metric since a smaller number of transmissions is typically equivalent to a [...] Read more.
Vehicular ad hoc networks consist of self-organizing nodes using multi-hop wireless links for communication without any infrastructure support. Traditionally, ad hoc routing protocols use the minimum hop count for their routing metric since a smaller number of transmissions is typically equivalent to a higher throughput, lower delay, and minimal power consumption. However, with the muti-rate capability of emerging radio interfaces, e.g., 802.11ax/be standards, the min-hop metric no longer results in high throughput. For instance, if the higher data rate links are selected for the route, it could result in a higher throughput even if the route takes more hop counts. In this paper, we propose a high throughput routing scheme, called MARV, which makes two key contributions. MARV searches for high throughput paths using an on-demand route searching algorithm so that the routing overhead is smaller compared to other multi-rate-aware routing schemes. MARV also searches for multiple paths to maintain both min-hop and high-throughput paths to select the adequate path depending on the data packet size. We conduct simulations to demonstrate that MARV outperforms not only min-hop path metrics but also previously proposed high-throughput metrics. Full article
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs
by Imane Zaimi, Abdelali Boushaba, Mohammed Oumsis, Brahim Jabir, Moulay Hafid Aabidi and Adil EL Makrani
Computers 2023, 12(10), 205; https://doi.org/10.3390/computers12100205 - 12 Oct 2023
Cited by 2 | Viewed by 1950
Abstract
Reducing transmission traffic delay is one of the most important issues that need to be considered for routing protocols, especially in the case of multimedia applications over vehicular ad hoc networks (VANET). To this end, we propose an extension of the FzGR (fuzzy [...] Read more.
Reducing transmission traffic delay is one of the most important issues that need to be considered for routing protocols, especially in the case of multimedia applications over vehicular ad hoc networks (VANET). To this end, we propose an extension of the FzGR (fuzzy geographical routing protocol), named MNH-FGR (multi-next-hops fuzzy geographical routing protocol). MNH-FGR is a multipath protocol that gains great extensibility by employing different link metrics and weight functions. To schedule multimedia traffic among multiple heterogeneous links, MNH-FGR integrates the weighted round-robin (WRR) scheduling algorithm, where the link weights, needed for scheduling, are computed using the multi-constrained QoS metric provided by the FzGR. The main goal is to ensure the stability of the network and the continuity of data flow during transmission. Simulation experiments with NS-2 are presented in order to validate our proposal. Additionally, we present a neural network algorithm to analyze and optimize the performance of routing protocols. The results show that MNH-FGR could satisfy critical multimedia applications with high on-time constraints. Also, the DNN model used can provide insights about which features had an impact on protocol performance. Full article
(This article belongs to the Special Issue Edge and Fog Computing for Internet of Things Systems 2023)
Show Figures

Figure 1

21 pages, 6091 KiB  
Article
Next-Hop Relay Selection for Ad Hoc Network-Assisted Train-to-Train Communications in the CBTC System
by Sixing Ma, Meng Li, Ruizhe Yang, Yang Sun, Zhuwei Wang and Pengbo Si
Sensors 2023, 23(13), 5883; https://doi.org/10.3390/s23135883 - 25 Jun 2023
Cited by 4 | Viewed by 1838
Abstract
In the communication-based train control (CBTC) system, traditional modes such as LTE or WLAN in train-to-train (T2T) communication face the problem of a complex and costly deployment of base stations and ground core networks. Therefore, the multi-hop ad hoc network, which has the [...] Read more.
In the communication-based train control (CBTC) system, traditional modes such as LTE or WLAN in train-to-train (T2T) communication face the problem of a complex and costly deployment of base stations and ground core networks. Therefore, the multi-hop ad hoc network, which has the characteristics of being relatively flexible and cheap, is considered for CBTC. However, because of the high mobility of the train, it is likely to move out of the communication range of wayside nodes. Moreover, some wayside nodes are heavily congested, resulting in long packet queuing delays that cannot meet the transmission requirements. To solve these problems, in this paper, we investigate the next-hop relay selection problem in multi-hop ad hoc networks to minimize transmission time, enhance the network throughput, and ensure the channel quality. In addition, we propose a multiagent dueling deep Q learning (DQN) algorithm to optimize the delay and throughput of the entire link by selecting the next-hop relay node. The simulation results show that, compared with the existing routing algorithms, it has obvious improvement in the aspects of delay, throughput, and packet loss rate. Full article
Show Figures

Figure 1

24 pages, 2798 KiB  
Article
Avoiding Detection by Hostile Nodes in Airborne Tactical Networks
by Dragos Ilie, Håkan Grahn, Lars Lundberg, Alexander Westerhagen, Bo Granbom and Anders Höök
Future Internet 2023, 15(6), 204; https://doi.org/10.3390/fi15060204 - 31 May 2023
Cited by 3 | Viewed by 2065
Abstract
Contemporary airborne radio networks are usually implemented using omnidirectional antennas. Unfortunately, such networks suffer from disadvantages such as easy detection by hostile aircraft and potential information leakage. In this paper, we present a novel mobile ad hoc network (MANET) routing protocol based on [...] Read more.
Contemporary airborne radio networks are usually implemented using omnidirectional antennas. Unfortunately, such networks suffer from disadvantages such as easy detection by hostile aircraft and potential information leakage. In this paper, we present a novel mobile ad hoc network (MANET) routing protocol based on directional antennas and situation awareness data that utilizes adaptive multihop routing to avoid sending information in directions where hostile nodes are present. Our protocol is implemented in the OMNEST simulator and evaluated using two realistic flight scenarios involving 8 and 24 aircraft, respectively. The results show that our protocol has significantly fewer leaked packets than comparative protocols, but at a slightly higher cost in terms of longer packet lifetime. Full article
Show Figures

Figure 1

25 pages, 3004 KiB  
Article
Dynamic Path-Planning and Charging Optimization for Autonomous Electric Vehicles in Transportation Networks
by Qinghua Tang, Demin Li, Yihong Zhang and Xuemin Chen
Appl. Sci. 2023, 13(9), 5476; https://doi.org/10.3390/app13095476 - 27 Apr 2023
Cited by 7 | Viewed by 3545
Abstract
With the growing popularity of autonomous electric vehicles (AEVs), optimizing their path-planning and charging strategy has become a critical research area. However, the dynamic nature of transport networks presents a significant challenge when ensuring their efficient operation. The use of vehicle-to-everything (V2X) communication [...] Read more.
With the growing popularity of autonomous electric vehicles (AEVs), optimizing their path-planning and charging strategy has become a critical research area. However, the dynamic nature of transport networks presents a significant challenge when ensuring their efficient operation. The use of vehicle-to-everything (V2X) communication in vehicular ad hoc networks (VANETs) has been proposed to tackle this challenge. However, establishing efficient communication and optimizing dynamic paths with charging selection remain complex problems. In this paper, we propose a joint push–pull communication mode to obtain real-time traffic conditions and charging infrastructure information (i.e., charging stations and energy segments). We also analyze the selection of relay vehicles in multi-hop communication routing, considering factors such as link stability, vehicle distance, and reputation values. Furthermore, we formulate a dynamic optimization problem based on real-time information to minimize travel and charging costs. Our proposed algorithm enables AEVs to obtain charging services from charging stations and conduct dynamic wireless charging via energy segments. We present a dynamic real-time A* algorithm to solve the path-optimization problem and a dynamic real-time charging selection algorithm based on dynamic path optimization when the state of charge is lower than the charging threshold. Extensive simulations demonstrate that the proposed joint push-pull communication mode can provide vehicles the up-to-date information and the developed optimization algorithms effectively reduce travel and charging costs. Full article
(This article belongs to the Special Issue Transportation Planning, Management and Optimization)
Show Figures

Figure 1

Back to TopTop