Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = mucin–drug interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1717 KiB  
Article
Anti-Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials
by Vânia Rocha, Helena Almeida, Bruno Sarmento and José das Neves
Pharmaceutics 2025, 17(4), 460; https://doi.org/10.3390/pharmaceutics17040460 - 2 Apr 2025
Cited by 1 | Viewed by 714
Abstract
Background: Candidiasis remains a chief concern in global healthcare. Drug safety issues and increasing resistance make it urgent to develop alternative antifungal agents, namely antimicrobial peptides. Amidated decoralin (Dec-CONH2) possesses considerable anti-Candida activity, and its association with nanocarriers could help [...] Read more.
Background: Candidiasis remains a chief concern in global healthcare. Drug safety issues and increasing resistance make it urgent to develop alternative antifungal agents, namely antimicrobial peptides. Amidated decoralin (Dec-CONH2) possesses considerable anti-Candida activity, and its association with nanocarriers could help in enhancing efficacy while reducing intrinsic toxicity to the host. Methods: We studied an N-terminal cysteine-modified version of the peptide (Cys-Dec-CONH2) and screened the effects of different nanosystems (polymeric nanoparticles (NPs), liposomes and gold NPs) on its activity against azole-sensitive and azole-resistant Candida species using a clinically relevant in vitro assay. Results: The antifungal activity of Cys-Dec-CONH2 was maintained (minimum inhibitory concentration (MIC) = 16–64 µg/mL), but the presence of poly(d,l-lactic-co-glycolic acid) (PLGA)- and polycaprolactone-based NPs impaired the antifungal effect of the peptide (MIC > 256 µg/mL). This effect was milder for polystyrene-based NPs, liposomes, and gold NPs (MIC ≤ 128 µg/mL). Additionally, the covalent surface functionalization of PLGA-based NPs with Cys-Dec-CONH2 or the presence of relevant biomolecules (albumin and mucin) resulted in complete inhibition of antifungal activity. Conclusions: Our data suggest that Cys-Dec-CONH2 is able to establish strong interfacial interactions with different nanomaterials, which need to be considered when developing nanomedicines based on this peptide for the management of candidiasis. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 8813 KiB  
Article
Chitosan-TPP Nanogels for Ocular Delivery of Folic Acid: Release Profile, Corneal Permeation, and Mucoadhesion Assessment
by Sebastián G. Bruno, Sofía M. Martínez, Camila Costa Gobbato, Daniela A. Quinteros, Agustina Alaimo and Oscar E. Pérez
Pharmaceutics 2025, 17(4), 424; https://doi.org/10.3390/pharmaceutics17040424 - 27 Mar 2025
Cited by 1 | Viewed by 672
Abstract
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and [...] Read more.
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and polydispersity index (PdI) were determined using dynamic light scattering (DLS). CS-FA interaction was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was applied for the dehydrated material characterization. Scanning electron microscopy (SEM) was used to evaluate the NGs ultraestructure. In vitro drug release studies were performed using a modified Franz diffusion cell, and the release profile was fitted to obtain kinetics parameters. Mucoadhesion properties were evaluated through ζ-potential measurements. Ex vivo corneal permeation studies were conducted in rabbit corneas to compare the permeability of FA contained in NGs. Results: NGs presented a Ho of 312.4 ± 8.2 nm and a PdI of 0.28 ± 0.04. SEM imaging revealed spherical morphologies with minor variations in size and shape induced by FA. Lyophilized and resuspended NGs exhibited a 6.8% increase in Ho and a PdI rise to 0.42, indicating slight aggregation. In vitro drug release studies demonstrated sustained FA release, as determined by the Higuchi model. Mucoadhesion studies showed a decrease in ζ-potential from +36.9 to +18.1 mV, confirming electrostatic interactions with mucin. Ex vivo corneal permeation studies indicated that encapsulated FA permeated 2.6 times slower than free FA, suggesting sustained release. Conclusions: our findings demonstrate the potential of nanostructures in the form of NGs to enhance FA-loaded ocular delivery and bioavailability. Full article
(This article belongs to the Special Issue Recent Advances in Chitosan-Based Nanoparticles for Drug Delivery)
Show Figures

Graphical abstract

22 pages, 2878 KiB  
Article
Protective Role and Enhanced Intracellular Uptake of Curcumin in Retinal Cells Using Self-Emulsifying Drug Delivery Systems (SNEDDS)
by Elide Zingale, Sebastiano Masuzzo, Tatu Lajunen, Mika Reinisalo, Jarkko Rautio, Valeria Consoli, Agata Grazia D’Amico, Luca Vanella and Rosario Pignatello
Pharmaceuticals 2025, 18(2), 265; https://doi.org/10.3390/ph18020265 - 17 Feb 2025
Cited by 1 | Viewed by 1146
Abstract
Background: Sirtuin-1 (SIRT1), a histone deacetylase enzyme expressed in ocular tissues with intracellular localization, plays a critical protective role against various degenerative ocular diseases. The link between reduced SIRT1 levels and diabetic retinopathy (DR) has prompted the exploration of natural therapeutic compounds that [...] Read more.
Background: Sirtuin-1 (SIRT1), a histone deacetylase enzyme expressed in ocular tissues with intracellular localization, plays a critical protective role against various degenerative ocular diseases. The link between reduced SIRT1 levels and diabetic retinopathy (DR) has prompted the exploration of natural therapeutic compounds that act as SIRT1 agonists. Curcumin (CUR), which has been shown to upregulate SIRT1 expression, is one such promising compound. However, effective delivery of CUR to the deeper ocular tissues, particularly the retina, remains a challenge due to its poor solubility and limited ocular penetration following topical administration. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for CUR topical ocular delivery represents a novel approach. Methods: In accordance with our prior research, optimized SNEDDS loaded with CUR were developed and characterized post-reconstitution with simulated tear fluid (STF) at a 1:10 ratio, showing suitable physicochemical and technological parameters for ocular delivery. Results: An entrapment efficiency (EE%) of approximately 99% and an absence of drug precipitation were noticed upon resuspension with STF. CUR-SNEDDS resulted in a better stability and release profile than free CUR under simulated ocular conditions. In vitro analysis of mucoadhesive properties revealed that CUR-SNEDDS, modified with a cationic lipid, demonstrated enhanced interactions with mucin, indicating the potential for improved ocular retention. Cytotoxicity tests demonstrated that CUR-SNEDDS did not affect the viability of human corneal epithelial (HCE) cells up to concentrations of 3 μM and displayed superior antioxidant activity compared to free CUR in an oxidative stress model using retinal pigment epithelial (ARPE-19) cells exposed to hydroquinone (HQ). Cell uptake studies confirmed an enhanced accumulation of CUR within the retinal cells following exposure to CUR-SNEDDS compared to neat CUR. CUR-SNEDDS, at lower concentrations, were found to effectively induce SIRT1 expression. Conclusions: The cytocompatibility, antioxidant properties, and enhanced cellular uptake suggest that these developed systems hold promise as formulations for the delivery of CUR to the retina. Full article
Show Figures

Graphical abstract

23 pages, 3549 KiB  
Article
Efavirenz Repurposing Challenges: A Novel Nanomicelle-Based Antiviral Therapy Against Mosquito-Borne Flaviviruses
by Sofía Maldonado, Pedro Fuentes, Ezequiel Bernabeu, Facundo Bertera, Javier Opezzo, Eduardo Lagomarsino, Hyun J. Lee, Fleming Martínez Rodríguez, Marcelo R. Choi, María Jimena Salgueiro, Elsa B. Damonte, Christian Höcht, Marcela A. Moretton, Claudia S. Sepúlveda and Diego A. Chiappetta
Pharmaceutics 2025, 17(2), 241; https://doi.org/10.3390/pharmaceutics17020241 - 12 Feb 2025
Viewed by 1009
Abstract
Background/Objective: World Health Organization latest statistics state that 17% of infectious diseases are transmitted by vectors, causing more than 700,000 deaths each year. Particularly, dengue (DENV), Zika (ZIKV) and yellow fever (YFV) viral infections have generated international awareness due to their epidemic proportion [...] Read more.
Background/Objective: World Health Organization latest statistics state that 17% of infectious diseases are transmitted by vectors, causing more than 700,000 deaths each year. Particularly, dengue (DENV), Zika (ZIKV) and yellow fever (YFV) viral infections have generated international awareness due to their epidemic proportion and risks of international spread. In this framework, the repositioning strategy of Efavirenz (EFV) represents a key clinical feature to improve different antiviral therapies. Therefore, the development of Soluplus®-based nanomicelles (NMs) loaded with EFV (10 mg/mL) for optimized oral pharmacotherapy against ZIKV, DENV and YFV infections was investigated. Methods: EFV-NMs were obtained by an acetone diffusion technique. Micellar size and in vitro micellar interaction with mucin were assessed by dynamic light scattering. In vitro cytocompatibility was investigated in A549 and Vero cells and micellar in vitro antiviral activity against ZIKV, DENV and YFV was evaluated. In vivo oral bioavailability and histological studies were assessed in Wistar rats. Results: EFV encapsulation within Soluplus® NMs increased the drug’s apparent aqueous solubility up to 4803-fold with a unimodal micellar size distribution and a micellar size of ~90 nm at 25 and 37 °C. Micellar in vitro interaction with mucin was also assessed in a pH range of 1.2–7.5 and its storage micellar physicochemical stability at 4 °C was confirmed over 2 years. In vitro cytocompatibility assays in A549 and Vero cells confirmed that EFV micellar dispersions resulted in safe nanoformulations. Interestingly, EFV-loaded NMs exhibited significantly higher in vitro antiviral activity compared with EFV solution for all the tested flaviviruses. In addition, the selectivity index (SI) values reveal that EFV-loaded NMs exhibited considerably more biological efficacy compared to EFV solution in A549 and Vero cell lines and for each viral infection (SI > 10). Further, the drug pharmacokinetics parameters were enhanced after the oral administration of EFV-loaded NMs, being biocompatible by not causing damage in the gastrointestinal segments. Conclusions: Overall, our EFV nanoformulation highlighted its potential as a novel drug delivery platform for optimized ZIKV, DENV and YFV antiviral therapy. Full article
Show Figures

Graphical abstract

18 pages, 3293 KiB  
Article
Development and Characterization of Silibinin-Loaded Nanoemulsions: A Promising Mucoadhesive Platform for Enhanced Mucosal Drug Delivery
by Ana Paula Santos Tartari, Joslaine Jacumazo, Ariane Krause Padilha Lorenzett, Rilton Alves de Freitas and Rubiana Mara Mainardes
Pharmaceutics 2025, 17(2), 192; https://doi.org/10.3390/pharmaceutics17020192 - 4 Feb 2025
Cited by 2 | Viewed by 1093
Abstract
Background: Silibinin (SLB), a flavonoid derived from milk thistle, exhibits promising therapeutic properties but faces significant clinical limitations due to poor solubility and bioavailability. Objectives: This study focuses on the development and characterization of SLB-loaded nanoemulsions designed for mucosal delivery. Methods: Nanoemulsions were [...] Read more.
Background: Silibinin (SLB), a flavonoid derived from milk thistle, exhibits promising therapeutic properties but faces significant clinical limitations due to poor solubility and bioavailability. Objectives: This study focuses on the development and characterization of SLB-loaded nanoemulsions designed for mucosal delivery. Methods: Nanoemulsions were prepared using the spontaneous emulsification method, guided by pseudoternary phase diagrams to determine selected component ratios. Comprehensive characterization included particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, rheological properties, and surface tension. Mucoadhesive properties were evaluated using quartz crystal microbalance with dissipation (QCM-D) to quantify interactions with mucin layers. Results: The combination of Capryol 90, Tween 80, and Transcutol in selected proportions yielded nanoemulsions with excellent stability and solubilization capacity, enhancing the solubility of silibinin by 625 times compared to its intrinsic solubility in water. The ternary phase diagram indicated that achieving nanoemulsions with particle sizes between 100 and 300 nm required higher concentrations of surfactants (60%), relative to oil (20%) and water (20%), with formulations predominantly composed of Smix (surfactant and cosurfactant mixture in a 1:1 ratio). Rheological analysis revealed Newtonian behavior, characterized by constant viscosity across varying shear rates and a linear torque response, ensuring ease of application and mechanical stability. QCM-D analysis confirmed strong mucoadhesive interactions, with significant frequency and dissipation shifts, indicative of prolonged retention and enhanced mucosal drug delivery. Furthermore, contact angle measurements showed a marked reduction in surface tension upon interaction with mucin, with the SLB-loaded nanoemulsion demonstrating superior wettability and strong mucoadhesive potential. Conclusions: These findings underscore the suitability of SLB-loaded nanoemulsions as a robust platform for effective mucosal drug delivery, addressing solubility and bioavailability challenges while enabling prolonged retention and controlled therapeutic release. Full article
Show Figures

Figure 1

17 pages, 1313 KiB  
Review
Serum Albumin in Nasal Drug Delivery Systems: Exploring the Role and Application
by Sandra Aulia Mardikasari, Gábor Katona and Ildikó Csóka
Pharmaceutics 2024, 16(10), 1322; https://doi.org/10.3390/pharmaceutics16101322 - 11 Oct 2024
Cited by 5 | Viewed by 3007
Abstract
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing [...] Read more.
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing drug solubility and stability, generating the desired controlled release profile, and developing favorable properties with respect to the challenges in nasal conditions, which, in this case, involves hindering rapid elimination due to nasal mucociliary clearance. Accordingly, considering the important role of serum albumin, in-depth knowledge related to its utilization in preparing nasal drug formulation is highly encouraged. This review aimed to explore the potential application of serum albumin in fabricating nasal drug formulations and its crucial role and functionality regarding the binding interaction with nasal mucin, which significantly determines the successful administration of nasal drug formulations. Full article
Show Figures

Graphical abstract

16 pages, 2939 KiB  
Article
In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride
by Silvia Voci, Agnese Gagliardi, Elena Giuliano, Maria Cristina Salvatici, Antonio Procopio and Donato Cosco
Pharmaceutics 2024, 16(10), 1296; https://doi.org/10.3390/pharmaceutics16101296 - 4 Oct 2024
Cited by 1 | Viewed by 1362
Abstract
Background: Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. [...] Read more.
Background: Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies. Methods: This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient. Results: The resulting systems were characterized by a mean diameter of ~160–170 nm, a narrow size distribution when 0.2–0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~−30 to −40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features. Conclusions: Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

14 pages, 1523 KiB  
Article
Role of In Vitro Tests in the Characterisation of Locally Applied, Locally Acting Drugs in the Throat: Application to Flurbiprofen
by Vit Perlik, Hafsa Ali, Jean M. Cardot and Anuradha Kulasekaran
Pharmaceutics 2024, 16(10), 1261; https://doi.org/10.3390/pharmaceutics16101261 - 27 Sep 2024
Viewed by 1129
Abstract
Background/Objectives: For locally applied, locally acting generic drug products, comparison to an originator product based on systemic exposure is usually not feasible due to low plasma concentrations and inadequate reflection of local exposure at the site of action. Where a validated PD model [...] Read more.
Background/Objectives: For locally applied, locally acting generic drug products, comparison to an originator product based on systemic exposure is usually not feasible due to low plasma concentrations and inadequate reflection of local exposure at the site of action. Where a validated PD model exists, a comparative clinical study can be performed in healthy subjects; where no surrogate endpoint is available, patients with the relevant indication need to be enrolled, with all the associated factors which could result in lack of sensitivity. Even though the need for alternative in vitro approaches has been acknowledged by both industry and regulatory bodies, the complexity of in vivo drug delivery processes makes the development of guidance documents particularly difficult. Our objective was to present in vitro approaches less classically used and to address in vivo relevance of the selected tests. Methods: This article analyses current regulatory approaches in Europe and the U.S., and highlights the key advantages of in vitro tests in terms of their sensitivity, reliability, reproducibility and in vivo relevance using locally applied flurbiprofen in various formulations. Results: The in vitro esophageal retention (IVOR) model demonstrates that the first 6–10 min after application of different flurbiprofen formulations is important for their comparison and also offers the best correlation with in vivo data using the partial area under the concentration-time curves (pAUCs). Rheological evaluations further demonstrated that the mucoadhesive properties of the gel spray formulation are based on interaction with mucin. Conclusions: Designing a relevant in vitro test requires adequate evaluation of the complexity of the drug substance, drug product, dosing conditions and delivery processes. Full article
Show Figures

Figure 1

31 pages, 1385 KiB  
Review
Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors
by Luciana Alexandra Pavelescu, Robert Mihai Enache, Oana Alexandra Roşu, Monica Profir, Sanda Maria Creţoiu and Bogdan Severus Gaspar
Int. J. Mol. Sci. 2024, 25(17), 9659; https://doi.org/10.3390/ijms25179659 - 6 Sep 2024
Cited by 11 | Viewed by 6798
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor [...] Read more.
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies. Full article
Show Figures

Figure 1

19 pages, 3305 KiB  
Article
Investigation of Hydrocolloid Plant Polysaccharides as Potential Candidates to Mimic the Functions of MUC5B in Saliva
by Christina Winter, Carolin Tetyczka, Duy Toan Pham, Dagmar Kolb, Gerd Leitinger, Sandra Schönfelder, Olaf Kunert, Tanja Gerlza, Andreas Kungl, Franz Bucar and Eva Roblegg
Pharmaceutics 2024, 16(5), 682; https://doi.org/10.3390/pharmaceutics16050682 - 18 May 2024
Cited by 1 | Viewed by 2017
Abstract
The successful substitution of complex physiological fluids, such as human saliva, remains a major challenge in drug development. Although there are a large number of saliva substitutes on the market, their efficacy is often inadequate due to short residence time in the mouth, [...] Read more.
The successful substitution of complex physiological fluids, such as human saliva, remains a major challenge in drug development. Although there are a large number of saliva substitutes on the market, their efficacy is often inadequate due to short residence time in the mouth, unpleasant mouthfeel, or insufficient protection of the teeth. Therefore, systems need to be identified that mimic the functions of saliva, in particular the salivary mucin MUC5B and the unique physiological properties of saliva. To this end, plant extracts known to contain hydrocolloid polysaccharides and to have mucus-forming properties were studied to evaluate their suitability as saliva substitutes. The aqueous plant extracts of Calendula officinalis, Fucus sp. thalli, and lichenan from Lichen islandicus were examined for composition using a range of techniques, including GC-MS, NMR, SEC, assessment of pH, osmolality, buffering capacity, viscoelasticity, viscoelastic interactions with human saliva, hydrocolloid network formation, and in vitro cell adhesion. For this purpose, a physiologically adapted adhesive test was developed using human buccal epithelial cells. The results show that lichenan is the most promising candidate to mimic the properties of MUC5B. By adjusting the pH, osmolality, and buffering capacity with K2HPO4, it was shown that lichenan exhibited high cell adhesion, with a maximum detachment force that was comparable to that of unstimulated whole mouth saliva. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts, 2nd Edition)
Show Figures

Figure 1

16 pages, 3137 KiB  
Review
Advances in the Evaluation of Gastrointestinal Absorption Considering the Mucus Layer
by Kaori Miyazaki, Akira Sasaki and Hiroshi Mizuuchi
Pharmaceutics 2023, 15(12), 2714; https://doi.org/10.3390/pharmaceutics15122714 - 30 Nov 2023
Cited by 6 | Viewed by 3267
Abstract
Because of the increasing sophistication of formulation technology and the increasing polymerization of compounds directed toward undruggable drug targets, the influence of the mucus layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding the complex structure of the mucus layer containing [...] Read more.
Because of the increasing sophistication of formulation technology and the increasing polymerization of compounds directed toward undruggable drug targets, the influence of the mucus layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding the complex structure of the mucus layer containing highly glycosylated glycoprotein mucins, lipids bound to the mucins, and water held by glycans interacting with each other is critical. Recent advances in cell culture and engineering techniques have led to the development of evaluation systems that closely mimic the ecological environment and have been applied to the evaluation of gastrointestinal drug absorption while considering the mucus layer. This review provides a better understanding of the mucus layer components and the gastrointestinal tract’s biological defense barrier, selects an assessment system for drug absorption in the mucus layer based on evaluation objectives, and discusses the overview and features of each assessment system. Full article
Show Figures

Graphical abstract

36 pages, 13082 KiB  
Article
Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota
by Angela Moraru, Ștefan-Ovidiu Dima, Naomi Tritean, Elena-Iulia Oprița, Ana-Maria Prelipcean, Bogdan Trică, Anca Oancea, Ionuț Moraru, Diana Constantinescu-Aruxandei and Florin Oancea
Pharmaceuticals 2023, 16(12), 1671; https://doi.org/10.3390/ph16121671 - 30 Nov 2023
Cited by 7 | Viewed by 2965
Abstract
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica [...] Read more.
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18–22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Based Nanostructured Systems)
Show Figures

Graphical abstract

20 pages, 1049 KiB  
Review
Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption
by Hideyuki Sato, Kohei Yamada, Masateru Miyake and Satomi Onoue
Pharmaceutics 2023, 15(12), 2708; https://doi.org/10.3390/pharmaceutics15122708 - 30 Nov 2023
Cited by 17 | Viewed by 3102
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane [...] Read more.
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract. Full article
Show Figures

Figure 1

28 pages, 2830 KiB  
Review
Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens—Factors Linked to Virulence and Pathogenicity
by Raúl Argüello-García, Julio César Carrero and M. Guadalupe Ortega-Pierres
Int. J. Mol. Sci. 2023, 24(16), 12850; https://doi.org/10.3390/ijms241612850 - 16 Aug 2023
Cited by 5 | Viewed by 3180
Abstract
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with [...] Read more.
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with epithelial cells, promoting increased paracellular permeability and enterocyte cell death (mainly apoptosis), which precede physiological and immunological disorders. Some cell-surface-anchored and molecules secreted from these parasites function as virulence markers, of which peptide hydrolases, particularly cysteine proteases (CPs), are abundant and have versatile lytic activities. Upon secretion, CPs can affect host tissues and immune responses beyond the site of parasite colonization, thereby increasing the pathogens’ virulence. The four intestinal protists considered here are known to secrete predominantly clan A (C1- and C2-type) CPs, some of which have been characterized. CPs of Giardia duodenalis (e.g., Giardipain-1) and Entamoeba histolytica (EhCPs 1-6 and EhCP112) degrade mucin and villin, cause damage to intercellular junction proteins, induce apoptosis in epithelial cells and degrade immunoglobulins, cytokines and defensins. In Cryptosporidium, five Cryptopains are encoded in its genome, but only Cryptopains 4 and 5 are likely secreted. In Blastocystis sp., a legumain-activated CP, called Blastopain-1, and legumain itself have been detected in the extracellular medium, and the former has similar adverse effects on epithelial integrity and enterocyte survival. Due to their different functions, these enzymes could represent novel drug targets. Indeed, some promising results with CP inhibitors, such as vinyl sulfones (K11777 and WRR605), the garlic derivative, allicin, and purified amoebic CPs have been obtained in experimental models, suggesting that these enzymes might be useful drug targets. Full article
(This article belongs to the Special Issue Microbial Proteases: Structure, Function and Role in Pathogenesis)
Show Figures

Figure 1

16 pages, 2870 KiB  
Article
Design and Evaluation of S-Protected Thiolated-Based Itopride Hydrochloride Polymeric Nanocrystals for Functional Dyspepsia: QbD-Driven Optimization, In Situ, In Vitro, and In Vivo Investigation
by Moutaz Y. Badr, Pratap Basim, Khaled M. Hosny, Waleed Y. Rizg, N. Raghavendra Naveen, Mallesh Kurakula, Fayez Alsulaimani, Awaji Y. Safhi, Fahad Y. Sabei, Mohammed Alissa and Abdulmohsin J. Alamoudi
Pharmaceuticals 2023, 16(7), 925; https://doi.org/10.3390/ph16070925 - 25 Jun 2023
Cited by 1 | Viewed by 2153
Abstract
Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and [...] Read more.
Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and target-specific actions, mucoadhesive polymers are essential. The current work aimed to use second-generation mucoadhesive polymers (i.e., thiolated polymers) to enhance mucoadhesive characteristics. An ITH-NC formulation was enhanced using response surface methodology. Concentrations of Tween 80 and Polyvinyl pyrrolidone (PVP K-30) were selected as independent variables that could optimize the formulation to obtain the desired entrapment efficacy and particle size/diameter. It was found that a formulation prepared using Tween 80 at a concentration of 2.55% and PVP K-30 at 2% could accomplish the goals for which an optimized formulation was needed. Either xanthan gum (XG) or thiolated xanthan gum (TXG) was added to the optimized formulation to determine how they affected the mucoadhesive properties of the formulation. Studies demonstrated that there was an initial burst release of ITH from the ITH/NC/XG and ITH/NC/TXG in the early hours and then a steady release for 24 h. As anticipated, the TXG formulation had a better mucin interaction, and this was needed to ensure that the drug was distributed to tissues that produce mucus. Finally, at the measured concentrations, the ITH/NC showed minimal cytotoxicity against lung cells, indicating that it may have potential for additional in vivo research. The enhanced bioavailability and mean residence time of the designed mucoadhesive NC formulations were confirmed by pharmacokinetic studies. Full article
(This article belongs to the Special Issue Polymorphs, Salts, and Cocrystals in Drug Delivery)
Show Figures

Figure 1

Back to TopTop