Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = mu opioid receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1101 KB  
Article
Naloxegol, an Oral Peripherally Acting Opioid Receptor Antagonist, Administered Concurrently with First-Line Systemic Therapy for Advanced Lung Adenocarcinoma (Alliance A221504): A Feasibility and Safety Study
by Pankaj Gupta, Kalpna Gupta, Travis Dockter, Elizabeth Harlos, Selina Chow, Niveditha Subbiah, Kathryn J. Ruddy, Lyudmila Bazhenova, Shelby Terstriep, Chao H. Huang, Robert A. Kratzke, Everett E. Vokes and Charles L. Loprinzi
Cancers 2026, 18(3), 373; https://doi.org/10.3390/cancers18030373 - 25 Jan 2026
Abstract
Background: Mu opioid receptors (MORs) in peripheral tissues mediate adverse effects of opioids that impair health-related quality of life (HRQoL) and may stimulate cancer progression via mitogenic signaling. Naloxegol, a peripherally acting MOR antagonist (PAMORA), is approved for opioid-induced constipation. Safety and [...] Read more.
Background: Mu opioid receptors (MORs) in peripheral tissues mediate adverse effects of opioids that impair health-related quality of life (HRQoL) and may stimulate cancer progression via mitogenic signaling. Naloxegol, a peripherally acting MOR antagonist (PAMORA), is approved for opioid-induced constipation. Safety and efficacy of naloxegol have not been evaluated concurrently with systemic cancer therapy. Methods: We conducted a randomized, double-blind, placebo-controlled trial of naloxegol in patients with advanced lung adenocarcinoma starting first-line systemic therapy. Results: Only 50 patients were enrolled; the trial was terminated early due to slow accrual. Two of the three components of the feasibility primary endpoint were not met (accrual and PRO completion). At 6 months, FACT-L emotional well-being was better with naloxegol (p = 0.0113). There were trends towards better Trial Outcome Index (p = 0.0505) and physical well-being (p = 0.0628) with naloxegol. Bowel function favored naloxegol for constipation (p = 0.0223), rectal pain during defecation (p = 0.0075), and abdominal pain from constipation (p = 0.0113). Adverse event frequency and severity, PRO-CTCAE, urinary hesitancy, pain scores, and progression-free and overall survival were comparable between naloxegol and placebo. Conclusions: Naloxegol appears to be safe and tolerable, with a signal of improved HRQoL and previously unappreciated benefit for emotional well-being, without adverse clinical outcomes. Our findings should be confirmed in larger studies. ClinicalTrials.gov ID: NCT03087708. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

11 pages, 547 KB  
Article
Genetic Influence on Extended-Release Naltrexone Treatment Outcomes in Patients with Opioid Use Disorder: An Exploratory Study
by Farid Juya, Kristin Klemmetsby Solli, Ann-Christin Sannes, Bente Weimand, Johannes Gjerstad, Lars Tanum and Jon Mordal
Brain Sci. 2026, 16(1), 23; https://doi.org/10.3390/brainsci16010023 - 24 Dec 2025
Viewed by 306
Abstract
Background/Objectives: The variation in the treatment outcomes of extended-release naltrexone (XR-NTX) including the potential role of genetic factors are poorly understood. This study aimed to explore the potential association between the catechol-O-methyltransferase (COMT) rs4680 and mu-opioid receptor (OPRM1) rs1799971 genotypes [...] Read more.
Background/Objectives: The variation in the treatment outcomes of extended-release naltrexone (XR-NTX) including the potential role of genetic factors are poorly understood. This study aimed to explore the potential association between the catechol-O-methyltransferase (COMT) rs4680 and mu-opioid receptor (OPRM1) rs1799971 genotypes and XR-NTX treatment outcomes in patients with opioid use disorder (OUD) specifically focusing on treatment retention, relapse to opioids, number of days of opioid use, and opioid cravings. Methods: This was a 24-week, open-label clinical prospective, exploratory study involving patients with OUD who chose treatment with monthly injections of intramuscular XR-NTX. Men and women aged 18–65 years with OUD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, were included. The participants were interviewed using the European Addiction Severity Index. Survival analyses and linear mixed models were used to analyze the data. Results: Of the 162 participants included in this study, 138 (21% female) initiated treatment with XR-NTX, with 88 genotyped for COMT rs4680 and 86 for OPRM1 rs1799971. Heterozygous Met/Val carriers of COMT rs4680 were less likely to relapse to opioids compared with those with the COMT rs4680 Met/Met genotype. No significant association was observed for the OPRM1 polymorphism. Conclusions: Patients with the COMT rs4680 Met/Val genotype exhibit a reduced risk of relapse to opioids and may therefore derive greater benefit from XR-NTX treatment compared with those with the COMT rs4680 Met/Met genotype. Future studies should be conducted with a larger number of participants and possibly include other genetic variants and treatment outcomes. The trial is registered at ClinicalTrials.gov (#NCT03647774) and the EU Clinical Trial Register (#2017-004706-18). Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

20 pages, 4431 KB  
Article
Molecular Imbalances Between Striosome and Matrix Compartments Characterize the Pathogenesis and Pathophysiology of Huntington’s Disease Model Mouse
by Ryoma Morigaki, Tomoko Yoshida, Joji Fujikawa, Jill R. Crittenden and Ann M. Graybiel
Int. J. Mol. Sci. 2025, 26(17), 8573; https://doi.org/10.3390/ijms26178573 - 3 Sep 2025
Viewed by 1861
Abstract
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 [...] Read more.
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 and D2 receptors in HD, indicating that it might serve as a key molecular marker in understanding disease mechanisms. In movement disorders, mutations in the genes encoding PDE10A and G-protein α subunit (Gαolf), both critical cAMP regulators in striatal spiny projection neurons, have been linked to chorea and dystonia. These observations highlight the potential importance of striatal cyclic AMP (cAMP) signaling in these disorders, but how such dysfunction could come is unknown. Here, we suggest that a key to understanding signaling dysfunction might be to evaluate these messenger systems in light of the circuit-level compartmental organization of the caudoputamen, in which there is particular vulnerability of the striosome compartment in HD. We developed machine learning algorithms to define with high precision and reproducibility the borders of striosomes in the brains of Q175 knock-in (Q175KI) HD mice from 3–12 months of age. We demonstrate that the expression of multiple molecules, including Gαolf, PDE10A, dopamine D1 and D2 receptors, and adenosine A2A receptors, is significantly reduced in the striosomes of Q175KI mice as compared to wildtype controls, across 3, 6, and 12 months of age. By contrast, mu-opioid receptor (MOR1) expression is uniquely upregulated, suggesting a compartment-specific and age-dependent shift in molecular profiles in the Q175KI HD mouse model caudoputamen. These differential changes may serve as a useful platform to determine factors underlying the greater vulnerability of striatal projection neurons in the striosomes than in the matrix in HD. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

13 pages, 1538 KB  
Article
Respiratory and Cardiovascular Activity of LENART01, an Analgesic Dermorphin–Ranatensin Hybrid Peptide, in Anesthetized Rats
by Piotr Wojciechowski, Dominika Zając, Adrian Górski, Wojciech Kamysz, Patrycja Kleczkowska and Katarzyna Kaczyńska
Int. J. Mol. Sci. 2025, 26(15), 7188; https://doi.org/10.3390/ijms26157188 - 25 Jul 2025
Viewed by 815
Abstract
Opioids are among the most effective drugs for treating moderate to severe pain. Unfortunately, opioid use, even short-term, can lead to addiction, tolerance, overdose, and respiratory depression. Therefore, efforts to design and develop novel compounds that would retain analgesic activity while reducing side [...] Read more.
Opioids are among the most effective drugs for treating moderate to severe pain. Unfortunately, opioid use, even short-term, can lead to addiction, tolerance, overdose, and respiratory depression. Therefore, efforts to design and develop novel compounds that would retain analgesic activity while reducing side effects continue unabated. The present study was designed to investigate the respiratory and cardiovascular effects of the hybrid peptide LENART01, which has evidenced potent antinociceptive and antimicrobial activity. This hybrid peptide, composed of N-terminally located dermorphin and C-terminal modified ranatensin pharmacophore, was tested in vivo in anesthetized rats. The main effect of LENART01 was apnea in 70% of examined animals, sighing, and a significant increase in blood pressure. Interestingly, the hybrid induced sighs less frequently than ranatensin, and apnea dependent on vagus nerve mu opioid receptor activation much less frequently and less intensely than dermorphin itself. This shows that LENART01 is a safer opioid system-related agent as compared to dermorphin for its prospective use in the treatment of pain. Full article
(This article belongs to the Special Issue Recent Progress of Opioid Research, 2nd Edition)
Show Figures

Figure 1

25 pages, 2976 KB  
Article
Dual Opioid–Neuropeptide FF Small Molecule Ligands Demonstrate Analgesia with Reduced Tolerance Liabilities
by Marco Mottinelli, V. Blair Journigan, Samuel Obeng, Victoria L. C. Pallares, Christophe Mѐsangeau, Coco N. Kapanda, Stephen J. Cutler, Janet A. Lambert, Shainnel O. Eans, Michelle L. Ganno, Wanhui Sheng, Tamara King, Abhisheak Sharma, Catherine Mollereau, Bonnie A. Avery, Jay P. McLaughlin and Christopher R. McCurdy
Molecules 2025, 30(13), 2851; https://doi.org/10.3390/molecules30132851 - 3 Jul 2025
Viewed by 1122
Abstract
Neuropeptide FF (NPFF) receptor antagonists prevent morphine-mediated antinociceptive tolerance, and compounds with dual mu opioid receptor (MOR) agonist and NPFF antagonist activity produce antinociception without tolerance. Compounds synthesized showed affinities in radioligand competition binding assays in the nM and µM range at the [...] Read more.
Neuropeptide FF (NPFF) receptor antagonists prevent morphine-mediated antinociceptive tolerance, and compounds with dual mu opioid receptor (MOR) agonist and NPFF antagonist activity produce antinociception without tolerance. Compounds synthesized showed affinities in radioligand competition binding assays in the nM and µM range at the opioid and NPFF receptors, respectively, and displayed substitution-dependent functional profiles in the [35S]GTPγS functional assay. From six compounds screened in vivo for antinociception and ability to prevent NPFF-induced hyperalgesia in mouse warm water tail withdrawal tests, compound 22b produced dose-dependent MOR-mediated antinociception with an ED50 value (and 95% confidence interval) of 6.88 (4.71–9.47) nmol, i.c.v., and also prevented NPFF-induced hyperalgesia. Meanwhile, 22b did not demonstrate the respiratory depression, hyperlocomotion, or impaired intestinal transit of morphine. Moreover, repeated treatment with 22b produced a 1.6-fold rightward shift in antinociceptive dose response, significantly less acute antinociceptive tolerance than morphine. Evaluated for microsomal stability in vitro and in vivo pharmacokinetic profile, 22b showed suitable microsomal stability paired in vivo with a large apparent volume of distribution and a clearance smaller than the hepatic flow in rats, suggesting no extra-hepatic metabolism. In conclusion, the present study confirms that dual-action opioid–NPFF ligands may offer therapeutic promise as analgesics with fewer liabilities of use. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Graphical abstract

18 pages, 11476 KB  
Article
The Identification of Opioid Receptors and Peptide Precursors in Human DRG Neurons Expressing Pain-Signaling Molecules Confirms Their Potential as Analgesic Targets
by Shaaban A. Mousa, Mohammed Shaqura, Sascha Tafelski, Jan David Wandrey, Özgür Celik, Sascha Treskatsch and Michael Schäfer
Cells 2025, 14(10), 694; https://doi.org/10.3390/cells14100694 - 11 May 2025
Cited by 3 | Viewed by 3072
Abstract
The presence and function of the opioidergic system in sensory dorsal root ganglia (DRG) was demonstrated in various animal models of pain. To endorse recent functional and transcriptional evidence of opioid receptors in human DRG, this study compared morphological and transcriptional evidence in [...] Read more.
The presence and function of the opioidergic system in sensory dorsal root ganglia (DRG) was demonstrated in various animal models of pain. To endorse recent functional and transcriptional evidence of opioid receptors in human DRG, this study compared morphological and transcriptional evidence in human and rat DRG using immunofluorescence confocal microscopy and mRNA transcript analysis. Specifically, it examined the neuronal expression of mu (MOR), delta (DOR), and kappa (KOR) opioid receptors, opioid peptide precursors (POMC, PENK, and PDYN), and key pain-signaling molecules. The results demonstrate abundant immunoreactivity in human DRG for key pain transduction receptors, including the thermosensitive ion channels TRPV1, TRPV4 and TRPA1, mechanosensitive PIEZO1 and PIEZO2, and the nociceptive-specific Nav1.8. They colocalized with calcitonin gene-related peptide (CGRP), a marker for peptidergic sensory neurons. Within this same subpopulation, we identified MOR, DOR, and KOR, while their ligand precursors were less abundant. Notably, the mRNA transcripts of MOR and PENK in human DRG were highest among the opioid-related genes; however, they were considerably lower than those of key pain-signaling molecules. These findings were corroborated by functional evidence in demonstrating the fentanyl-induced inhibition of voltage-gated calcium currents in rat DRG, which was antagonized by naloxone. The immunohistochemical and transcriptional demonstration of opioid receptors and their endogenous ligands in both human and rat DRG support recent electrophysiologic and in situ hybridization evidence in human DRG and confirms their potential as analgesic targets. This peripherally targeted approach has the advantage of mitigating central opioid-related side effects, endorsing the potential of future translational pain research from rodent models to humans. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

18 pages, 8225 KB  
Article
Anticonvulsant Profiles of Three Hemorphin-4 Analogs with Rhodamine B in Mice
by Jana Tchekalarova, Miroslav Rangelov, Ivan Iliev, Nadezhda Todorova, Tsveta Stoyanova, Lian Nedelchev and Petar Todorov
Pharmaceuticals 2025, 18(5), 673; https://doi.org/10.3390/ph18050673 - 1 May 2025
Cited by 1 | Viewed by 729
Abstract
Background/Objectives: Hemorphins, considered to be bioactive atypical oligopeptides, are products of hemoglobin metabolism. Recently, our team reported the synthesis and characterization of three N-modified analogs of hemorphin-4 (H4) with rhodamine B (Rh). In the present study, the Rh-1, Rh-2, and Rh-3 compounds [...] Read more.
Background/Objectives: Hemorphins, considered to be bioactive atypical oligopeptides, are products of hemoglobin metabolism. Recently, our team reported the synthesis and characterization of three N-modified analogs of hemorphin-4 (H4) with rhodamine B (Rh). In the present study, the Rh-1, Rh-2, and Rh-3 compounds were intracerebroventricularly infused at doses of 1, 2.5, 5, and 10 µg/5 µL, respectively, and evaluated for their antiseizure activity in 6-Hz and maximal electroshock (MES) tests and in a pentylenetetrazol (PTZ)-induced kindling model in mice. Phenytoin and diazepam were used as the reference drugs. The role of opioid receptors (ORs) underlying their mechanism of action was also evaluated in silico and pharmacologically. Results: The three Rh-H4 compounds showed a good safety profile at a concentration of 100 µg/mL in the mouse embryonic fibroblasts. They suppressed psychomotor seizures and seizure spreading as follows: Rh-1 at doses of 5 and 10 µg/5 µL, Rh-2 at the highest dose, and Rh-3 at doses of 1–10 µg/5 µL, respectively. Administered at doses of 5 µg/5 µL (Rh-1 and Rh-3) and 10 µg/5 µL (Rh-2), the compounds suppressed clonic seizures in the kindled mice comparable to the reference drug diazepam. A combination of selective delta (DOR), kappa (KOR), and mu (MOR) OR antagonists with the highest doses of the Rh-1, Rh-2, and Rh-3 compounds was used to elucidate the possible role of ORs in the underlying mechanism related to their protective activity against seizure spread. Only the selective DOR antagonist, natrindole, suppressed the effect of the Rh-1 peptide analog on seizures. The OR antagonist naloxone prevented the antiseizure activity of Rh-1 in the kindled mice. The results of docking analysis also showed the model-specific interaction of the three Rh-H4 compounds with the OR. Conclusions: Our results suggest that the antiseizure activity of Rh-1 is mediated by the OR, and in particular by the DOR, while the mechanism underlying the antiseizure effect of Rh-3 is more complex and may involve other receptors. Full article
(This article belongs to the Special Issue Pharmacology and Mechanism of Action of Peptides in the Brain)
Show Figures

Graphical abstract

14 pages, 1613 KB  
Article
The Role of Endogenous Beta-Endorphin and Enkephalins in the Crosstalk Between Ethanol and Morphine
by Andy Tseng, Syed Muzzammil Ahmad, Abdul Hamid and Kabirullah Lutfy
Pharmaceuticals 2025, 18(1), 107; https://doi.org/10.3390/ph18010107 - 16 Jan 2025
Cited by 1 | Viewed by 1987
Abstract
Background: There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system [...] Read more.
Background: There is clinical concern about the combined use of alcohol and opiates. Several lines of evidence support an interaction between alcohol and the endogenous opioid system. Thus, we hypothesized that ethanol, by causing the release of opioid peptides, may sensitize the system to the action of exogenous opioids such as morphine. Objectives: In this study, using the place conditioning paradigm, a model of reward, we determined whether a morphine challenge would alter the pre-established preference induced by ethanol conditioning in mice, and whether this response was mediated by the mu opioid receptor (MOP). Given that ethanol exposure stimulates the release of opioid peptides, we also assessed the role of beta-endorphin (β-END) and enkephalins (ENKs) in this response. Methods: Mice lacking MOPs, β-END, and/or ENKs, and their respective wild-type controls were tested for preconditioning place preference on day 1. Mice were then conditioned with ethanol (2 g/kg) versus saline on days 2 to 4 and then tested under a drug-free state for postconditioning place preference on day 5. On day 8, mice received a single injection of morphine (5 mg/kg) and were tested for place preference. On the test days, mice were placed in the central chamber and allowed to explore the chambers. The amount of time that mice spent in the drug-paired chamber was recorded. Results: We found that a challenge dose of morphine given on day 8 enhanced the conditioned place preference (CPP) response in mice previously conditioned with ethanol. This response was abolished in MOP-null mice, confirming the role of MOPs in this response. Although this enhanced response was not altered in mice lacking either β-END or ENKs compared to their wild-type littermates/controls, it was completely blunted in mice lacking both β-END and enkephalins. Conclusions: Together, these results suggest that these opioid peptides jointly mediate the crosstalk between the rewarding actions of morphine and ethanol. Full article
Show Figures

Graphical abstract

25 pages, 3265 KB  
Review
Anesthetic Approaches and Their Impact on Cancer Recurrence and Metastasis: A Comprehensive Review
by Hoon Choi and Wonjung Hwang
Cancers 2024, 16(24), 4269; https://doi.org/10.3390/cancers16244269 - 22 Dec 2024
Cited by 16 | Viewed by 7030
Abstract
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor [...] Read more.
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor cells. Key mechanisms, such as epithelial–mesenchymal transition and angiogenesis, further enhance metastasis, while hypoxia-inducible factors and inflammatory responses create a microenvironment conducive to tumor progression. Anesthetic agents and techniques modulate these mechanisms in distinct ways. Inhaled anesthetics, such as sevoflurane, may suppress immune function by increasing catecholamines and cytokines, thereby promoting cancer progression. In contrast, propofol-based total intravenous anesthesia mitigates stress responses and preserves natural killer cell activity, supporting immune function. Opioids suppress immune surveillance and promote angiogenesis through the activation of the mu-opioid receptor. Opioid-sparing strategies using NSAIDs show potential in preserving immune function and reducing recurrence risk. Regional anesthesia offers benefits by reducing systemic stress and immune suppression, though the clinical outcomes remain inconsistent. Additionally, dexmedetomidine and ketamine exhibit dual effects, both enhancing and inhibiting tumor progression depending on the dosage and context. This review emphasizes the importance of individualized anesthetic strategies to optimize long-term cancer outcomes. While retrospective studies suggest potential benefits of propofol-based total intravenous anesthesia and regional anesthesia, further large-scale trials are essential to establish the definitive role of anesthetic management in cancer recurrence and survival. Full article
(This article belongs to the Special Issue Perioperative Management and Cancer Outcome)
Show Figures

Figure 1

11 pages, 583 KB  
Opinion
Improving Diagnosis and Management of Opioid-Induced Constipation (OIC) in Clinical Practice: An Italian Expert Opinion
by Giustino Varrassi, Giuseppe Casale, Maria Grazia De Marinis, Francesco Dentali, Paolo Evangelista, Gino Gobber, Gaetano Lanzetta, Pierangelo Lora Aprile, Maria Caterina Pace, Piero Portincasa, Franco Radaelli and Andrea Ungar
J. Clin. Med. 2024, 13(22), 6689; https://doi.org/10.3390/jcm13226689 - 7 Nov 2024
Cited by 4 | Viewed by 6990
Abstract
Opioid-induced constipation (OIC) is a very common and troublesome gastrointestinal side effect following the use of opioids. Despite existing international guidelines, OIC is largely underdiagnosed and undertreated. ECHO OIC is a European project designed to improve the diagnosis and management of OIC at [...] Read more.
Opioid-induced constipation (OIC) is a very common and troublesome gastrointestinal side effect following the use of opioids. Despite existing international guidelines, OIC is largely underdiagnosed and undertreated. ECHO OIC is a European project designed to improve the diagnosis and management of OIC at the primary care level. The next phase of the ECHO OIC project is to review and adapt the proposed European pathway at national level, considering the local patient journey and clinical practice. A multidisciplinary group of 12 Italian experts reviewed and discussed the European path and formulated a seven-step guide for the practical management of OIC that is also easily applicable in primary care: 1. When prescribing long-term opioids, the physician should inform the patient of the possibility of the onset of OIC; 2. At opioid prescription, doctors should also prescribe a treatment for constipation, preferably macrogol or stimulant laxatives; 3. The patient should be evaluated for OIC within the second week of initiating opioid treatment, by clinical history and Rome IV criteria; 4. In the presence of constipation despite laxatives, prescription of a PAMORA (Peripherally Acting Mu Opioid Receptor Antagonist) should be considered; 5. When prescribing a PAMORA, prescribing information should be carefully reviewed, and patients should be accurately instructed for appropriate use; 6. Efficacy and tolerability of the PAMORA should be monitored regularly by Bowel Function Index, considering a cut-off of 30 for the possible step-up of OIC treatment; 7. After 4 weeks of treatment, if the efficacy of PAMORA is deemed inadequate, discontinuation of the PAMORA, addition of an anti-constipation drugs, change of opioid type, or referral to a specialist should be considered. Spreading knowledge about the OIC problem as much as possible to the health community is crucial to obtain not only an early treatment of the condition but also to promote its prevention. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

11 pages, 601 KB  
Article
Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study
by Mónica Escorial, Javier Muriel, César Margarit, Laura Agulló, Thomas Zandonai, Ana Panadero, Domingo Morales and Ana M. Peiró
Biomedicines 2024, 12(9), 2056; https://doi.org/10.3390/biomedicines12092056 - 10 Sep 2024
Cited by 1 | Viewed by 2002
Abstract
Background/Objective: There are several questionnaires for the challenge of anticipating opioid use disorder (OUD). However, many are not specific for chronic non-cancer pain (CNCP) or have been developed in the American population, whose sociodemographic factors are very different from the Spanish population, leading [...] Read more.
Background/Objective: There are several questionnaires for the challenge of anticipating opioid use disorder (OUD). However, many are not specific for chronic non-cancer pain (CNCP) or have been developed in the American population, whose sociodemographic factors are very different from the Spanish population, leading to scarce translation into clinical practice. Thus, the aim of this study is to prospectively validate a predictive model for OUD in Spanish patients under long-term opioids. Methods: An innovative two-stage predictive model was developed from retrospective (n = 129) and non-overlapping prospective (n = 100) cohorts of real-world CNCP outpatients. All subjects used prescribed opioids for 6 or more months. Sociodemographic, clinical and pharmacological covariates were registered. Mu-opioid receptor 1 (OPRM1, A118G, rs1799971) and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were also analyzed. The model performance and diagnostic accuracy were calculated. Results: The two-stage model comprised risk factors related to OUD (younger age, work disability and high daily opioid dose) and provided new useful information about other risk factors (low quality of life, OPRM-G allele and CYP2D6 extreme phenotypes). The validation showed a satisfactory accuracy (70% specificity and 75% sensitivity) for our predictive model with acceptable discrimination and goodness of fit. Conclusions: Our study presents the results of an innovative model for predicting OUD in our setting. After external validation, it could represent a change in the paradigm of opioid treatment, helping clinicians to better identify and manage the risks and reduce the side effects and complications. Full article
Show Figures

Figure 1

16 pages, 5022 KB  
Article
The Role of the Mu Opioid Receptors of the Medial Prefrontal Cortex in the Modulation of Analgesia Induced by Acute Restraint Stress in Male Mice
by Yinan Du, Yukui Zhao, Aozhuo Zhang, Zhiwei Li, Chunling Wei, Qiaohua Zheng, Yanning Qiao, Yihui Liu, Wei Ren, Jing Han, Zongpeng Sun, Weiping Hu and Zhiqiang Liu
Int. J. Mol. Sci. 2024, 25(18), 9774; https://doi.org/10.3390/ijms25189774 - 10 Sep 2024
Cited by 3 | Viewed by 2150
Abstract
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic “disinhibition” mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the [...] Read more.
Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic “disinhibition” mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown. In this study, we investigated the contributions of MORs expressed on glutamatergic (MORGlut) and GABAergic (MORGABA) neurons of the medial prefrontal cortex (mPFC), as well as the functional role and activity of neurons projecting from the mPFC to the periaqueductal gray (PAG) region, in male mice. We achieved this through a combination of hot-plate tests, c-fos staining, and 1 h acute restraint stress exposure tests. The results showed that our acute restraint stress protocol produced mPFC MOR-dependent SIA effects. In particular, MORGABA was found to play a major role in modulating the effects of SIA, whereas MORGlut seemed to be unconnected to the process. We also found that mPFC–PAG projections were efficiently activated and played key roles in the effects of SIA, and their activation was mediated by MORGABA to a large extent. These results indicated that the activation of mPFC MORGABA due to restraint stress was able to activate mPFC–PAG projections in a potential “disinhibition” pathway that produced analgesic effects. These findings provide a potential theoretical basis for pain treatment or drug screening targeting the mPFC. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (III))
Show Figures

Figure 1

18 pages, 758 KB  
Review
Opioid Use and Gut Dysbiosis in Cancer Pain Patients
by Flaminia Coluzzi, Maria Sole Scerpa, Chiara Loffredo, Marina Borro, Joseph V. Pergolizzi, Jo Ann LeQuang, Elisa Alessandri, Maurizio Simmaco and Monica Rocco
Int. J. Mol. Sci. 2024, 25(14), 7999; https://doi.org/10.3390/ijms25147999 - 22 Jul 2024
Cited by 6 | Viewed by 3013
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of [...] Read more.
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1394 KB  
Article
Effects of Selective and Mixed-Action Kappa and Delta Opioid Receptor Agonists on Pain-Related Behavioral Depression in Mice
by S. Stevens Negus, Celsey M. St. Onge, Young K. Lee, Mengchu Li, Kenner C. Rice and Yan Zhang
Molecules 2024, 29(14), 3331; https://doi.org/10.3390/molecules29143331 - 16 Jul 2024
Cited by 5 | Viewed by 2999
Abstract
We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion [...] Read more.
We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment. Accordingly, this study evaluated TK10, TK33, and TK35 in a recently validated assay of pain-related behavioral depression in mice that are less vulnerable to false-positive effects. For comparison, we also evaluated the effects of the MOR agonist/analgesic hydrocodone (positive control), the neurokinin 1 receptor (NK1R) antagonist aprepitant (negative control), nalfurafine as a selective KOR agonist, SNC80 as a selective DOR agonist, and a nalfurafine/SNC80 mixture. Intraperitoneal injection of dilute lactic acid (IP lactic acid) served as a noxious stimulus to depress vertical and horizontal locomotor activity in male and female ICR mice. IP lactic acid-induced locomotor depression was alleviated by hydrocodone but not by aprepitant, nalfurafine, SNC80, the nalfurafine/SNC80 mixture, or the KOR/DOR agonists. These results suggest that caution is warranted in advancing mixed-action KOR/DOR agonists as candidate analgesics. Full article
Show Figures

Figure 1

13 pages, 2167 KB  
Article
CBD Versus CBDP: Comparing In Vitro Receptor-Binding Activities
by Mehdi Haghdoost, Scott Young, Alisha K. Holloway, Matthew Roberts, Ivori Zvorsky and Marcel O. Bonn-Miller
Int. J. Mol. Sci. 2024, 25(14), 7724; https://doi.org/10.3390/ijms25147724 - 15 Jul 2024
Cited by 4 | Viewed by 4447
Abstract
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be [...] Read more.
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be purchased in the North American market, even though their biological activities are nearly unknown. To investigate their relative potency, we conducted in vitro receptor-binding experiments with CBDP (cannabinoid CB1/CB2 receptor antagonism, serotonin 5HT-1A agonism, dopamine D2S (short form) agonism, and mu-opioid negative allosteric modulation) and compared the observed activity with that of CBD. To our knowledge, this is the first publication to investigate CBDP’s receptor activity in vitro. A similar activity profile was observed for both CBD and CBDP, with the only notable difference at the CB2 receptor. Contrary to common expectations, CBD was found to be a slightly more potent CB2 antagonist than CBDP (p < 0.05). At the highest tested concentration, CBD demonstrated antagonist activity with a 33% maximum response of SR144528 (selective CB2 antagonist/inverse agonist). CBDP at the same concentration produced a weaker antagonist activity. A radioligand binding assay revealed that among cannabinoid and serotonin receptors, CB2 is likely the main biological target of CBDP. However, both CBD and CBDP were found to be significantly less potent than SR144528. The interaction of CBDP with the mu-opioid receptor (MOR) produced unexpected results. Although the cannabidiol family is considered to be a set of negative allosteric modulators (NAMs) of opioid receptors, we observed a significant increase in met-enkephalin-induced mu-opioid internalization when cells were incubated with 3 µM of CBDP and 1 µM met-enkephalin, a type of activity expected from positive allosteric modulators (PAMs). To provide a structural explanation for the observed PAM effect, we conducted molecular docking simulations. These simulations revealed the co-binding potential of CBDP (or CBD) and met-enkephalin to the MOR. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

Back to TopTop