Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = monoamine oxidase inhibitor A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 448
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

19 pages, 769 KiB  
Systematic Review
Ayahuasca, Pain, and Inflammation: A Systematic Review of Preclinical Studies
by Bianca Villanova, Giordano Novak Rossi, Lorena Terene Lopes Guerra, José Carlos Bouso, Jaime Eduardo Cecilio Hallak and Rafael Guimarães dos Santos
Psychoactives 2025, 4(3), 24; https://doi.org/10.3390/psychoactives4030024 - 15 Jul 2025
Viewed by 450
Abstract
Pain is a protective mechanism that can be classified into acute and chronic types. Ayahuasca is a psychoactive brew rich in dimethyltryptamine or DMT (a 5-HT2A receptor agonist), and harmine (a monoamine-oxidase (MAO) inhibitor) used for religious and therapeutic purposes. Previous preclinical [...] Read more.
Pain is a protective mechanism that can be classified into acute and chronic types. Ayahuasca is a psychoactive brew rich in dimethyltryptamine or DMT (a 5-HT2A receptor agonist), and harmine (a monoamine-oxidase (MAO) inhibitor) used for religious and therapeutic purposes. Previous preclinical and anecdotal evidence suggests that ayahuasca and its compounds have antinociceptive and anti-inflammatory effects due to 5-HT2A agonism and MAO inhibition. Thus, the current study aims to provide a systematic review of the antinociceptive and anti-inflammatory effects of ayahuasca and its alkaloids in preclinical models. All studies published up to December 2024 were screened and evaluated for eligibility. A total of 1535 publications were identified, of which 29 adhered to the predefined criteria. Reviewed articles reported antinociceptive effects of ayahuasca, harmine, and harmaline. Regarding anti-inflammatory effects, the compounds of ayahuasca, especially harmine, have demonstrated a reduction and an increase in pro-inflammatory and anti-inflammatory cytokines, respectively. Although there are promising results regarding the antinociceptive and anti-inflammatory effects of ayahuasca and its alkaloids, further investigation is needed. Full article
Show Figures

Figure 1

41 pages, 5101 KiB  
Review
Dual Inhibitors of Acetylcholinesterase and Monoamine Oxidase-B for the Treatment of Alzheimer’s Disease
by Ayesha Asim, Michał K. Jastrzębski and Agnieszka A. Kaczor
Molecules 2025, 30(14), 2975; https://doi.org/10.3390/molecules30142975 - 15 Jul 2025
Viewed by 579
Abstract
Alzheimer’s disease (AD) is a multi-factorial neurodegenerative disease with a complex pathomechanism that can be best treated with multi-target medications. Among the possible molecular targets involved in AD, acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) are well recognized because they control the neurotransmitters [...] Read more.
Alzheimer’s disease (AD) is a multi-factorial neurodegenerative disease with a complex pathomechanism that can be best treated with multi-target medications. Among the possible molecular targets involved in AD, acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) are well recognized because they control the neurotransmitters responsible for memory processes. This review discusses the current understanding of AD pathology, recent advances in AD treatment, and recent reports in the field of dual AChE/MAO-B inhibitors for treating AD. We provide a classification of dual inhibitors based on their chemical structure and describe active compounds belonging to, i.a., chalcones, coumarins, chromones, imines, and hydrazones. Special emphasis is given to the computer-aided strategies of dual inhibitors design, their structure–activity relationships, and their interactions with the molecular targets at the molecular level. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

20 pages, 6758 KiB  
Article
Novel Au(I)- and Ag(I)-NHC Complexes with N-Boc-Protected Proline as Potential Candidates for Neurodegenerative Disorders
by Jessica Ceramella, Assunta D’Amato, Francesca Procopio, Annaluisa Mariconda, Daniel Chavarria, Domenico Iacopetta, Francesco Ortuso, Pasquale Longo, Fernanda Borges and Maria Stefania Sinicropi
Int. J. Mol. Sci. 2025, 26(13), 6116; https://doi.org/10.3390/ijms26136116 - 25 Jun 2025
Viewed by 407
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by progressive neuronal dysfunction and loss and represent a significant global health challenge. Oxidative stress, neuroinflammation, and neurotransmitter dysregulation, particularly affecting acetylcholine (ACh) and monoamines, are key hallmarks of these [...] Read more.
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by progressive neuronal dysfunction and loss and represent a significant global health challenge. Oxidative stress, neuroinflammation, and neurotransmitter dysregulation, particularly affecting acetylcholine (ACh) and monoamines, are key hallmarks of these conditions. The current therapeutic strategies targeting cholinergic and monoaminergic systems have some limitations, highlighting the need for novel approaches. Metallodrugs, especially ruthenium and platinum complexes, are gaining attention for their therapeutic use. Among metal complexes, gold(I) and silver(I) N-heterocyclic carbene (NHC) complexes exhibit several biological activities, but their application in NDDs, particularly as monoamine oxidase (MAO) inhibitors, remains largely unexplored. To advance the understanding of this field, we designed, synthesized, and evaluated the biological activity of a new series of Au(I) and Ag(I) complexes stabilized by NHC ligands and bearing a carboxylate salt of tert-butyloxycarbonyl (Boc)-N-protected proline as an anionic ligand. Through in silico and in vitro studies, we assessed their potential as acetylcholinesterase (AChE) and MAO inhibitors, as well as their antioxidant and anti-inflammatory properties, aiming to contribute to the development of potential novel therapeutic agents for NDD management. Full article
Show Figures

Figure 1

43 pages, 6701 KiB  
Review
Alleviation of Neurological Disorders by Targeting Neurodegenerative-Associated Enzymes: Natural and Synthetic Molecules
by Alka Ashok Singh, Fazlurrahman Khan and Minseok Song
Int. J. Mol. Sci. 2025, 26(10), 4707; https://doi.org/10.3390/ijms26104707 - 14 May 2025
Viewed by 1299
Abstract
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with [...] Read more.
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with natural and synthetic molecules. Key enzymes, including acetylcholinesterase, monoamine oxidase, beta-secretase, tau kinases, caspases, and cyclooxygenase-2, are implicated in diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Modulating these enzymes can alleviate symptoms, slow disease progression, or reverse pathological changes. Natural molecules derived from plants, microbes, seaweeds, and animals have long been noted for their therapeutic potential. Their ability to interact with specific enzymes with high specificity and minimal side effects makes them promising candidates for treatment. These natural agents provide a foundation for developing targeted therapies with improved safety profiles. Simultaneously, the development of synthetic chemistry has resulted in molecules designed to inhibit neurodegenerative enzymes with precision. This review examines the progress in creating small molecules, peptides, and enzyme inhibitors through sophisticated drug design techniques. It evaluates the efficacy, safety, and mechanisms of these synthetic agents, highlighting their potential for clinical application. The review offers a comprehensive overview of recent advancements in enzyme-targeted therapies for neurological disorders, covering both natural and synthetic molecules investigated in preclinical and clinical settings. It discusses the mechanisms through which these molecules exert their effects, the challenges faced in their development, and future research directions. By synthesizing current knowledge, this paper aims to illuminate the potential of enzyme-targeted interventions in managing neurological disorders, showcasing both the promise and limitations of these approaches. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 2806 KiB  
Article
In Vitro Evaluation of Novel Furo[3,2-c]coumarins as Cholinesterases and Monoamine Oxidases Inhibitors
by Mariagrazia Rullo, Alice Benzi, Lara Bianchi, Massimo Maccagno, Guglielmo Marcantoni Taddei, Daniela Valeria Miniero, Giuseppe Felice Mangiatordi, Giovanni Lentini, Leonardo Pisani, Giovanni Petrillo and Cinzia Tavani
Molecules 2025, 30(8), 1830; https://doi.org/10.3390/molecules30081830 - 18 Apr 2025
Viewed by 592
Abstract
Coumarin represents a privileged structural motif that is quite common in nature-derived and synthetic bioactive molecules. Some of us have recently described the straightforward preparation of complex furo[3,2-c]coumarins through a sequential double coupling protocol. Aiming at finding novel chemical probes for [...] Read more.
Coumarin represents a privileged structural motif that is quite common in nature-derived and synthetic bioactive molecules. Some of us have recently described the straightforward preparation of complex furo[3,2-c]coumarins through a sequential double coupling protocol. Aiming at finding novel chemical probes for the modulation of key anti-Alzheimer’s targets, a small subset of furo[3,2-c]coumarin prototypes and their non-aromatic synthetic precursors were tested in vitro as inhibitors of ChEs (acetyl- and butyrylcholinesterase, AChE and BChE) and MAOs (monoamine oxidases A and B, MAO A and MAO B). All compounds were low-micromolar AChE inhibitors devoid of toxic effects against SH-SY5Y cells. Lineweaver-Burk plots and docking simulations suggested mixed-type kinetics for inhibitor 3d (IC50 = 4.1 μM toward AChE). Its promising inhibitory profile encompasses additional, highly selective, activity against monoamine oxidase B, with a submicromolar IC50 value (561 nM). Full article
Show Figures

Graphical abstract

20 pages, 5945 KiB  
Article
Aging-Associated Amyloid-β Plaques and Neuroinflammation in Bottlenose Dolphins (Tursiops truncatus) and Novel Cognitive Health-Supporting Roles of Pentadecanoic Acid (C15:0)
by Stephanie Venn-Watson and Eric D. Jensen
Int. J. Mol. Sci. 2025, 26(8), 3746; https://doi.org/10.3390/ijms26083746 - 16 Apr 2025
Cited by 1 | Viewed by 4717
Abstract
There is an urgent need to identify interventions that broadly target aging-related cognitive decline and progression to Alzheimer’s disease (AD). Bottlenose dolphins (Tursiops truncatus) have histologic changes similar to AD in humans, and they also develop shared age-associated co-morbidities identified as [...] Read more.
There is an urgent need to identify interventions that broadly target aging-related cognitive decline and progression to Alzheimer’s disease (AD). Bottlenose dolphins (Tursiops truncatus) have histologic changes similar to AD in humans, and they also develop shared age-associated co-morbidities identified as risk factors for AD in humans, including type 2 diabetes, ferroptosis, and iron overload, which can be driven by nutritional C15:0 deficiency. We hypothesized that (1) dolphins would have amyloid beta (Aβ) plaques and neuroinflammation that paralleled that of humans in relation to age-related progression, quantitative concentration, and brain region; and (2) C15:0 would have dose-dependent activities relevant to protecting cognitive health. Quantitative immunohistochemistry staining was used to assess 68 tissues from archived brains of 19 Navy dolphins to evaluate associations among amyloid beta (Aβ) plaques and neuroinflammation by brain region, sex, and age group. Further, dose-dependent C15:0 activities, using a third-party panel intended to screen for potential AD therapeutics, were evaluated. Similar to humans, dolphins had the highest Aβ plaque density variation in the hippocampus (90th percentile of 4.95 plaques/mm2), where plaque density increased with age (p = 0.05). All measured markers of neuroinflammation were detected, including the highest concentrations of activated microglia (CD68+) in the hippocampus (0.46 ± 0.38 cells/mm2). C15:0 was a dose-dependent inhibitor of two targets, fatty acid amide hydrolase (FAAH) (IC50 2.5 µM, 89% maximum inhibition at 50 µM relative to URB597) and monoamine oxidase B (MAO-B) (IC50 19.4 µM, 70% maximum inhibition at 50 µM relative to R(-)-Deprenyl). These activities have demonstrated efficacy against Aβ formation and neuroinflammation, including protection of cognitive function in the hippocampus. These findings suggest that, in addition to protecting against AD co-morbidities, C15:0 may play a distinct role in supporting cognitive health, especially at higher concentrations. Full article
Show Figures

Figure 1

43 pages, 500 KiB  
Review
Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review
by Keming Gao, Evrim Bayrak Oruc and Buket Koparal
Medicina 2025, 61(4), 558; https://doi.org/10.3390/medicina61040558 - 21 Mar 2025
Viewed by 1841
Abstract
Objective: To narratively review currently available antidepressants and future potential antidepressants as monotherapy for the treatment of depressive disorders. Methods: Selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), dopamine reuptake inhibitor (bupropion), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors [...] Read more.
Objective: To narratively review currently available antidepressants and future potential antidepressants as monotherapy for the treatment of depressive disorders. Methods: Selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), dopamine reuptake inhibitor (bupropion), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs) were reviewed according to the results from Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study and systematic reviews. For the rest of the antidepressants, a PubMed/Medline search was conducted with priority for systematic reviews. For drugs in development for depressive disorders, PubMed, Google, and Clinicaltrials.gov databases were used. Results: The STAR*D Study demonstrated that sertraline, venlafaxine, and bupropion monotherapy had similar efficacy in patients with major depressive disorder (MDD) who failed citalopram. A network meta-analyses of randomized, placebo-controlled trials found that SSRIs, SNRIs, bupropion, TCAs, mirtazapine, and agomelatine had similar relative efficacy compared to placebo, but had different acceptability. Gepirone had more failed/negative studies and smaller effect size relative to placebo compared to other antidepressants. The combination of dextromethorphan and bupropion, ketamine infusion, and intranasal esketamine had faster onset of action but similar effect size compared to monoamine-based antidepressants as monotherapy. Brexanolone and zuranolone are effective in postpartum depression (PPD), but the effect size of zuranolone in MDD as monotherapy or adjunctive therapy was very small. Psychedelics, glutamate receptor-related agents, kappa opioid receptor antagonists, orexin receptor antagonists, new anti-inflammatory agents, and biomarker-based antidepressant therapy have been under investigation for depressive disorders. Psychedelics showed faster onset of action, large effect size, and long durability. Conclusions: Monoamine-based antidepressants likely continue to be the mainstream antidepressants for depressive disorder. NMDA receptor antagonists and neurosteroid antidepressants will play a bigger role with the improvement of accessibility. Psychedelics may become a game changer if phase III studies validate their efficacy and safety in depressive disorders. Full article
(This article belongs to the Section Psychiatry)
27 pages, 2964 KiB  
Article
Tailored Intranasal Albumin Caged Selegiline-α Synuclein siRNA Liposome with Improved Efficiency in Parkinson’s Model
by Ahmed A. Katamesh, Hend Mohamed Abdel-Bar, Mohammed Khaled Bin Break, Shimaa M. Hassoun, Gehad Mohammed Subaiea, Amr Radwan and Hadel A. Abo El-Enin
Pharmaceutics 2025, 17(2), 243; https://doi.org/10.3390/pharmaceutics17020243 - 12 Feb 2025
Viewed by 1380
Abstract
Background/Objectives: Parkinson’s disease (PD) is a progressive neuro-degenerative disorder characterized by α-synuclein aggregation, which promotes neuronal death and accelerates neurodegeneration. Small interfering RNA (siRNA) can reduce α-synuclein levels, but its therapeutic potential is limited by poor stability and delivery challenges. Similarly, Selegiline (Sel), [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a progressive neuro-degenerative disorder characterized by α-synuclein aggregation, which promotes neuronal death and accelerates neurodegeneration. Small interfering RNA (siRNA) can reduce α-synuclein levels, but its therapeutic potential is limited by poor stability and delivery challenges. Similarly, Selegiline (Sel), a monoamine oxidase-B (MAO-B) inhibitor, has low bioavailability, restricting its effectiveness. This study aims to develop an intranasal (IN) albumin-coated liposomal system (C-LipSel-siSNCA2) for the co-delivery of Sel and α-synuclein-targeting siRNA (siSNCA2) to enhance brain targeting and therapeutic efficacy. Methods: Liposomes were prepared using the ethanol injection method and optimized via D-optimal design for size, charge, and encapsulation efficiency (EE%). The optimized formulation was coated with human serum albumin (HSA) and characterized for stability, cellular uptake, and gene silencing. In vivo pharmacokinetics and pharmacodynamics were assessed in a rotenone-induced PD rat model to evaluate the motor function, biochemical markers, and brain-targeting efficiency. Results: Optimized liposomes had a particle size of 113.5 ± 6.8 nm, zeta potential of 6.2 ± 0.8 mV, and high EE% (Sel: 92.35%; siRNA: 78.66%). Albumin coating increased size to 136.5 ± 10.3 nm and shifted zeta potential to −13.5 ± 1.4 mV, enhancing stability and targeting. IN administration achieved a 3-fold increase in brain area under the concentration-time curve (AUC) versus intravenous delivery. In PD rats, C-LipSel-siSNCA2 improved motor and non-motor functions, restored dopamine levels, enhanced catalase activity, and reduced MAO-B levels, mitigating dopamine degradation and α-synuclein aggregation. Conclusions: This non-invasive, dual-action nanoplatform offers a targeted therapy for PD, combining siRNA gene silencing and MAO-B inhibition, with the potential for clinical translation in neurodegenerative diseases. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

25 pages, 780 KiB  
Review
Monoamine Oxidase Inhibitors in Toxic Models of Parkinsonism
by Olga Buneeva and Alexei Medvedev
Int. J. Mol. Sci. 2025, 26(3), 1248; https://doi.org/10.3390/ijms26031248 - 31 Jan 2025
Cited by 1 | Viewed by 1599
Abstract
Monoamine oxidase inhibitors are widely used for the symptomatic treatment of Parkinson’s disease (PD). They demonstrate antiparkinsonian activity in different toxin-based models induced by 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and pesticides (rotenone and paraquat). In some models, such as MPTP-induced PD, MAO inhibitors prevent the [...] Read more.
Monoamine oxidase inhibitors are widely used for the symptomatic treatment of Parkinson’s disease (PD). They demonstrate antiparkinsonian activity in different toxin-based models induced by 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and pesticides (rotenone and paraquat). In some models, such as MPTP-induced PD, MAO inhibitors prevent the formation of the neurotoxin MPP+ from the protoxin MPTP. Regardless of the toxin’s nature, potent MAO inhibitors prevent dopamine loss reduction, the formation of hydrogen peroxide, hydrogen peroxide signaling, and the accumulation of hydrogen peroxide-derived reactive oxygen species responsible for the development of oxidative stress. It becomes increasingly clear that some metabolites of MAO inhibitors (e.g., the rasagiline metabolite 1-R-aminoindan) possess their own bio-pharmacological activities unrelated to the parent compound. In addition, various MAO inhibitors exhibit multitarget action, in which MAO-independent effects prevail. This opens new prospects in the development of novel therapeutics based on simultaneous actions on several prospective targets for the therapy of PD. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2024)
Show Figures

Figure 1

22 pages, 3301 KiB  
Review
Targeting MAO-B with Small-Molecule Inhibitors: A Decade of Advances in Anticancer Research (2012–2024)
by Iyman Alsaad, Diana M. A. Abdel Rahman, Ola Al-Tamimi, Shayma’a A. Alhaj, Dima A. Sabbah, Rima Hajjo and Sanaa K. Bardaweel
Molecules 2025, 30(1), 126; https://doi.org/10.3390/molecules30010126 - 31 Dec 2024
Cited by 1 | Viewed by 2310
Abstract
Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through [...] Read more.
Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target. Various monoamine oxidase B inhibitors have shown promise in inhibiting tumor growth and inducing apoptosis across different cancer types. In this review, we investigate MAO-B network biology, which highlighted glycolysis pathways as notable links between MAO-B and cancer. Further molecular modeling analysis illustrated the basis of MAO-B ligand binding, revealing a hydrophobic binding pocket, with key residues such as Tyr398 and Tyr435 playing crucial roles in substrate oxidation. MAO-B inhibitors that were reportsed in the literature (2012–2024) and their potential application in cancer therapy were discussed, highlighting key molecular scaffolds, such as propargyl analogs of phenyl alkyl amines, hydrazine derivatives, cyclopropylamine derivatives, MAO-B activated pro-drugs, and natural phenylpropanoid derivatives. The reported literature underscores the therapeutic potential of MAO-B inhibitors as versatile anticancer agents, warranting further investigation to optimize their efficacy and specificity across various malignancies. Full article
Show Figures

Figure 1

21 pages, 5047 KiB  
Article
Inhibitory Activity of N- and S-Functionalized Monoterpene Diols Towards Monoamine Oxidases A and B
by Alexandra V. Podturkina, Oleg V. Ardashov, Yuliya V. Soldatova, Darya A. Poletaeva, Anastasiya V. Smolina, Ekaterina P. Vasyuchenko, Yuri V. Vyatkin, Nikolai S. Li-Zhulanov, Irina I. Faingold, Nariman F. Salakhutdinov and Konstantin P. Volcho
Int. J. Mol. Sci. 2025, 26(1), 97; https://doi.org/10.3390/ijms26010097 - 26 Dec 2024
Viewed by 889
Abstract
Monoamine oxidase B (MAO-B) inhibitors are widely used as part of combination drug therapy for Parkinson’s disease. As demonstrated in both in vitro and in vivo experiments, the monoterpenoid Prottremine and some of its derivatives exhibit high antiparkinsonian activity. In this study, the [...] Read more.
Monoamine oxidase B (MAO-B) inhibitors are widely used as part of combination drug therapy for Parkinson’s disease. As demonstrated in both in vitro and in vivo experiments, the monoterpenoid Prottremine and some of its derivatives exhibit high antiparkinsonian activity. In this study, the inhibitory activity of Prottremine and its derivatives (including 14 new 9-N- and S-derivatives) against MAO-A and MAO-B enzymes has been investigated for the first time. Compounds containing fragments of substituted anilines have demonstrated the highest activity against MAO-A; for example, compound 28 had an IC50 of 178 ± 44 μM. A significant proportion of the compounds tested, including Prottremine, exhibited moderate inhibitory activity towards MAO-B, with the most active being the o-aminoacetophenone derivative, which had an IC50 of 95 ± 5 μM. A molecular docking method for studying murine MAO-A and -B enzymes was developed using AlphaFold2 (v2.3.2), with further improvements. For the MAO-B enzyme, a strong correlation was observed between the molecular docking data and the measured activity of the compounds, with the maximum binding affinity registered for the most active compound. It is conceivable that the antiparkinsonian activity of Prottremine and some of its derivatives may be partially mediated, among other mechanisms, by MAO-B enzyme inhibition. Full article
(This article belongs to the Special Issue Biosynthesis and Application of Natural Compound)
Show Figures

Figure 1

27 pages, 1640 KiB  
Review
Neuroplasticity and Mechanisms of Action of Acute and Chronic Treatment with Antidepressants in Preclinical Studies
by Gilberto Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Gabriel Guillen-Ruiz, Jonathan Cueto-Escobedo, Ana Karen Limón-Vázquez, Juan Francisco Rodríguez-Landa and César Soria-Fregozo
Biomedicines 2024, 12(12), 2744; https://doi.org/10.3390/biomedicines12122744 - 29 Nov 2024
Cited by 3 | Viewed by 5974
Abstract
Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and [...] Read more.
Pharmacotherapy for depression includes drugs such as monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), noradrenaline (NA) and serotonin (5-HT) reuptake inhibitors (NaSSAs), and atypical antidepressants; these drugs exert differentially beneficial effects on symptoms of depression after acute and chronic treatment in animal models. Said effects are established through neuroplastic mechanisms involving changes in neurogenesis and synaptogenesis as result of the activation of intracellular signaling pathways associated with neurochemical and behavioral changes. Antidepressants increase the synaptic availability of monoamines (monoaminergic hypothesis) such as 5-HT, NA, and gamma-aminobutyric acid (GABA) by inhibiting their reuptake or degradation and activating intracellular signaling pathways such as the responsive element binding protein (cAMP-CREB) cascade, which regulates the expression of genes related to neuroplasticity and neurogenesis, such as brain-derived neurotrophic factor (BDNF), in various brain structures implicated in depression. The aim of this review is to analyze the mechanisms of action of different antidepressants and to compare the effects of acute and chronic treatment on neuroplasticity in animal models of depression. A thorough search was conducted in PubMed, Scopus, and Web of Science, focusing on studies since 1996 with keywords like antidepressants, acute and chronic treatment, neuroplasticity, and experimental depression. Studies included had to investigate antidepressant effects experimentally, with full-text access, while excluding those that did not. Data extraction focused on study design, findings, and relevance to understanding treatment differences. Only high-quality, peer-reviewed studies were considered to ensure a comprehensive synthesis of current knowledge. Full article
(This article belongs to the Special Issue Antidepressants: 70 Years)
Show Figures

Figure 1

25 pages, 10386 KiB  
Article
Coumarin Derivative Hybrids: Novel Dual Inhibitors Targeting Acetylcholinesterase and Monoamine Oxidases for Alzheimer’s Therapy
by Teresa Żołek, Rosa Purgatorio, Łukasz Kłopotowski, Marco Catto and Kinga Ostrowska
Int. J. Mol. Sci. 2024, 25(23), 12803; https://doi.org/10.3390/ijms252312803 - 28 Nov 2024
Cited by 4 | Viewed by 1688
Abstract
Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer’s disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with O-phenylpiperazine via three- and [...] Read more.
Multi-target-directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies like Alzheimer’s disease (AD). The synergistic inhibition of MAO-B, MAO-A, and AChE is believed to enhance treatment efficacy. A novel coumarin-based molecule substituted with O-phenylpiperazine via three- and four-carbon linkers at the 5- and 7-positions, has been identified as an effective MTDL against AD. Employing a medicinal chemistry approach, combined with molecular docking, molecular dynamic simulation, and ΔGbind estimation, two series of derivatives emerged as potent MTDLs: 8-acetyl-7-hydroxy-4-methylcoumarin (IC50: 1.52–4.95 μM for hAChE, 6.97–7.65 μM for hMAO-A) and 4,7-dimethyl-5-hydroxycoumarin (IC50: 1.88–4.76 μM for hMAO-B). They displayed binding free energy (ΔGbind) of −76.32 kcal/mol (11) and −70.12 kcal/mol (12) against AChE and −66.27 kcal/mol (11) and −62.89 kcal/mol (12) against MAO-A. It is noteworthy that compounds 11 and 12 demonstrated efficient binding to both AChE and MAO-A, while compounds 3 and 10 significantly reduced MAO-B and AChE aggregation in vitro. These findings provide structural templates for the development of dual MAO and AChE inhibitors for the treatment of neurodegenerative diseases. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 2380 KiB  
Article
Synthesis of 1,2,4-Oxadiazin-5(6H)-One Derivatives and Their Biological Investigation as Monoamine Oxidase Inhibitors
by Sofia I. Presnukhina, Valentina D. Kotlyarova, Anton A. Shetnev, Sergey V. Baykov, Rakhymzhan Turmanov, Nurbol Appazov, Rakhmetulla Zhapparbergenov, Leilya Zhussupova, Nurila Togyzbayeva, Stephanus J. Cloete, Mikhail K. Korsakov, Vadim P. Boyarskiy, Anél Petzer and Jacobus P. Petzer
Molecules 2024, 29(23), 5550; https://doi.org/10.3390/molecules29235550 - 25 Nov 2024
Cited by 2 | Viewed by 1915
Abstract
Monoamine oxidase (MAO) plays a key role in the pathogenesis of central nervous system disorders, and MAO inhibitors have been used in the treatment of depression and Parkinson’s disease. In the search for new classes of MAO inhibitors, the present study investigated a [...] Read more.
Monoamine oxidase (MAO) plays a key role in the pathogenesis of central nervous system disorders, and MAO inhibitors have been used in the treatment of depression and Parkinson’s disease. In the search for new classes of MAO inhibitors, the present study investigated a series of 1,2,4-oxadiazin-5(6H)-one derivatives. This study provides the first optimization of the reaction conditions for the condensation of amidoximes with alkyl 2-halocarboxylates to yield the desired 1,2,4-oxadiazin-5(6H)-ones. The results of the in vitro MAO inhibition studies showed that the 1,2,4-oxadiazin-5(6H)-ones were indeed inhibitors of human MAO with the most potent inhibition observed for 5f (IC50 = 0.900 µM) and 7c (IC50 = 0.371 µM). It was concluded that, with appropriate substitution, 1,2,4-oxadiazin-5(6H)-one derivatives would act as good potency MAO-B inhibitors and lead compounds for the development of antiparkinsonian drugs. In Parkinson’s disease, MAO-B inhibitors enhance central dopamine levels and reduce MAO-mediated production of hydrogen peroxide and resultant oxidative injury. This study represents one of few works to investigate synthetic approaches and biological activities of the 1,2,4-oxadiazin-5(6H)-one class of heterocycles. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop