Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = molybdenum material recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5445 KB  
Article
Effect of Adding Molybdenum on Microstructure, Hardness, and Corrosion Resistance of an AlCoCrFeNiMo0.25 High-Entropy Alloy
by Mariusz Walczak, Wojciech J. Nowak, Wojciech Okuniewski and Dariusz Chocyk
Materials 2025, 18(19), 4566; https://doi.org/10.3390/ma18194566 - 30 Sep 2025
Viewed by 739
Abstract
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, [...] Read more.
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, in the present study, the high-entropy alloy AlCoCrFeNiMo0.25 was examined and compared with AISI 304L steel and the reference alloy AlCoCrFeNi. The HEA was produced by arc melting in vacuum. The effect of molybdenum addition (5% at.) on the structure, mechanical properties, and corrosion resistance was evaluated. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out in a 3.5% NaCl solution in a three-electrode electrochemical system. The addition of molybdenum to AlCoCrFeNiMox alloy additionally caused, along with the BCC phase, the formation of σ phase and FCC phase (less than 1%), as well as changes in the microstructure, leading to the fragmentation of grains and the formation of a mosaic structure. On the basis of nanoindentation tests, it was established that the addition of Mo increases hardness and elastic modulus and improves nanoindentation coefficients H/E and H3/E2, as well as an increase in the elastic recovery index while decreasing plasticity index (vs. the reference equiatomic HEA). This indicates the improvement of anti-wear properties with impact loading resistance. In turn, electrochemical tests have shown that the addition of Mo improves corrosion resistance. Corrosion pitting develops in Al- and Ni-rich areas of HEA alloys, as a result of galvanic microcorrosion related to Cr chemical segregation. In general, the addition of 5% Mo results in a fine-grained mosaic structure, which primarily translates into favorable nanoindentation and corrosion properties of the AlCoCrFeNiMo0.25 alloy. Full article
Show Figures

Figure 1

32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Cited by 1 | Viewed by 1090
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 9602 KB  
Article
Photothermal and Magnetic Actuation of Multimodal PNIPAM Hydrogel-Based Soft Robots
by Xiangyu Teng, Zhizheng Gao, Xuehao Feng, Shuliang Zhu and Wenguang Yang
Gels 2025, 11(9), 692; https://doi.org/10.3390/gels11090692 - 1 Sep 2025
Viewed by 1238
Abstract
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating [...] Read more.
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating molybdenum disulfide (MoS2) to endow it with photothermal response properties, the material achieves muscle-like controllable contraction and expansion deformation—a critical breakthrough in mimicking biological motion mechanics. Building on this material advancement, the research team developed a series of soft robotic prototypes to systematically explore the hydrogel’s motion characteristics. A flytrap-inspired soft robot demonstrates rapid opening–closing movements, replicating the swift responsiveness of natural carnivorous plants. For terrestrial locomotion, a hexapod crawling robot utilizes the photo-induced stretch-recovery mechanism of both horizontally configured and pre-bent feet to achieve stable directional propulsion. Most notably, a magnetically driven rolling robot integrates magnetic units to realize versatile multimodal movement: it achieves a stable rolling speed of 1.8 cm/s across flat surfaces and can surmount obstacles up to 1.5 times its own body size. This work not only validates the strong potential of PNIPAM hydrogel-based soft robots in executing complex motion tasks but also provides valuable new insights for the development of multimodal soft robotic systems, paving the way for future innovations in adaptive and bio-inspired robotics. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Figure 1

28 pages, 3804 KB  
Article
Sustainable Management of Bottom Ash and Municipal Sewage Sludge as a Source of Micronutrients for Biomass Production
by Jacek Antonkiewicz, Beata Kołodziej, Maja Bryk, Magdalena Kądziołka, Robert Pełka and Tilemachos Koliopoulos
Sustainability 2025, 17(16), 7493; https://doi.org/10.3390/su17167493 - 19 Aug 2025
Cited by 1 | Viewed by 872
Abstract
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion [...] Read more.
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion of bituminous coal or biomass and municipal sewage sludge, and different doses of the waste mixtures, as a micronutrient source for plants. Yield, concentration, concentration index, uptake and simplified balance of the micronutrients (manganese, iron, molybdenum, cobalt, aluminium) in plant biomass were measured. Results showed that the wastes differently affected the parameters studied, which generally increased via treatment as follows: coal ash, biomass ash < coal or biomass ash mixtures with sewage sludge < sewage sludge. Irrespective of treatment, micronutrient recovery rate followed the following trend: Mn > Mo > Fe > Co > Al, from 0.32–25.82% for Mn to 0.04–0.28% for Al. For individual elements, recovery depended on waste. For Mn, Fe and Al, the application of ash separately or in mixtures with sludge at higher doses reduced recovery (0.04–0.78%). For Mn, Fe, Al and Mo, the application of ash–sludge mixtures at lower doses increased recovery (0.11–5.82%), with the highest recoveries when sludge was used separately (0.28–25.82%). For Co, the separate application of sewage sludge and ash–sludge mixture at the lower dose increased recovery (2.41–2.52%), with the highest Co recovery following the separate application of coal ash (2.78%). Ash, sludge and their mixtures were a valuable source of micronutrients for plants. Ash–sludge mixtures improved micronutrient uptake compared to ash used separately. Application of these wastes as fertilisers aligns with the EU Action Plan on the Circular Economy and can contribute to achieving SDGs 2 and 12. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

19 pages, 6178 KB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 1101
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

16 pages, 3766 KB  
Article
Enhanced Molybdenum Recovery Achieved by a Complex of Porous Material-Immobilized Surface-Engineered Yeast in Development of a Sustainable Biosorption Technology
by Thiti Jittayasotorn, Kentaro Kojima, Audrey Stephanie, Kaho Nakamura, Hernando P. Bacosa, Kengo Kubota, Masanobu Kamitakahara, Chihiro Inoue and Mei-Fang Chien
Microorganisms 2025, 13(5), 1034; https://doi.org/10.3390/microorganisms13051034 - 30 Apr 2025
Viewed by 995
Abstract
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express [...] Read more.
Molybdenum (Mo) is a critical industrial metal valued for its corrosion resistance and strength-enhancing properties. However, increasing demand necessitates more efficient and sustainable recovery methods. Bio-recovery of Mo by biosorption is a promising resolution, especially by the use of surface-engineered microbes that express metal binding proteins on its cell surface. This study investigates the potential of Saccharomyces cerevisiae strain ScBp6, which displays a molybdate-binding protein (ModE) on its cell surface, immobilized on porous materials. Our findings reveal that polyurethane sponges (PS) significantly outperform ceramic materials in yeast immobilization, entrapping 1.76 × 107 cells per sponge compared to 1.70 × 106 cells per ceramic cube. Furthermore, the yeast–PS complex demonstrated superior Mo adsorption, reaching 2.16 pg Mo per yeast cell under 10 ppm Mo conditions, comparable to free yeast cells (1.96 pg Mo per yeast cell). These results establish PS as an effective and scalable platform for Mo recovery, offering high biosorption efficiency, reusability, and potential for industrial wastewater treatment applications. Full article
(This article belongs to the Special Issue Bio-Convergence: Microorganism Usage for Sustainability Applications)
Show Figures

Figure 1

11 pages, 5121 KB  
Article
Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype
by Netzahualcóyotl Palomera and Peter Feng
Micromachines 2025, 16(4), 358; https://doi.org/10.3390/mi16040358 - 21 Mar 2025
Viewed by 857
Abstract
Different materials are studied for environmental gas sensors as well as photodetection prototypes. A ZnO/MoS2 p-n junction was synthetized to act as a multifunctional sensor prototype. After the ZnO was prepared on a silicon substrate by using DC sputtering at room temperature, [...] Read more.
Different materials are studied for environmental gas sensors as well as photodetection prototypes. A ZnO/MoS2 p-n junction was synthetized to act as a multifunctional sensor prototype. After the ZnO was prepared on a silicon substrate by using DC sputtering at room temperature, molybdenum disulfide layers were spin-coated on a nanostructured zinc oxide flake-shaped surface to form an active layer. The heterostructure’s composite surface was examined using scanning electron microscopy, energy-dispersed X-ray, and Raman spectroscopy. Responses to light frequencies, light intensities, and gas chemical tracing were characterized, revealing an enhanced multifunctional performance of the prototype. Characterizations of light-induced photocurrents indicted that the obtained response strength (photocurrent/illumination light power) was up to 0.01 A/W, and the response time was less than 5 ms. In contrast, the gas-sensing measurements showed that its response strength (variation in resistance/original resistance) was up to 3.7% and the response time was down to 150 s when the prototype was exposed to ammonia gas, with the concentration down to 168 ppm. The fabricated prototype appears to have high stability and reproducibility, quick response and recovery times, as well as a high signal-to-noise ratio. Full article
Show Figures

Figure 1

23 pages, 5932 KB  
Article
Facile Doping and Functionalization of Molybdic Acid into Nanobiochar to Enhance Mercury Ion Removal from Water Systems
by Safe ELdeen M. E. Mahmoud, Tarek M. Abdel-Fattah, Mohamed E. Mahmoud and Eva Díaz
Nanomaterials 2024, 14(22), 1789; https://doi.org/10.3390/nano14221789 - 7 Nov 2024
Cited by 1 | Viewed by 1340
Abstract
Functionalized nanomaterials with surface-active groups have garnered significant research interest due to their wide-ranging applications, particularly in water treatment for removing various contaminants. This study focuses on developing a novel, multi-functional nanobiosorbent by synthesizing nanosized biochar from artichoke leaves (NBAL) and molybdic acid [...] Read more.
Functionalized nanomaterials with surface-active groups have garnered significant research interest due to their wide-ranging applications, particularly in water treatment for removing various contaminants. This study focuses on developing a novel, multi-functional nanobiosorbent by synthesizing nanosized biochar from artichoke leaves (NBAL) and molybdic acid (MA). The resulting nanobiosorbent, MA@NBAL, is produced through a microwave-irradiation process, offering a promising material for enhanced environmental remediation. The characteristics of assembled MA@NBAL were evaluated from SEM-EDX, XPS, TGA, FT-IR, and zeta potential detection. The size of particles ranged from 18.7 to 23.7 nm. At the same time, the EDX analysis denoted the existence of several major elements with related percentage values of carbon (52.9%), oxygen (27.6%), molybdenum (8.8%), and nitrogen (4.5%) in the assembled MA@NBAL nanobiosorbent. The effectiveness of MA@NBAL in removing Hg(II) ions was monitored via the batch study method. The optimized maximum removal capacity of Hg(II) ions onto MA@NBAL was established at pH 6.0, 30.0 min equilibrium time, and 20 mg of nanobiosorbent, providing 1444.25 mg/g with a 10.0 mmol/L concentration of Hg(II). Kinetic studies revealed that the adsorption process followed a pseudo-second-order model, with R2 values ranging from 0.993 to 0.999 for the two tested Hg(II) concentrations, indicating excellent alignment with the experimental data. This suggests that the chemisorption mechanism involves cation exchange and complex formation. Isotherm model evaluation further confirmed the adsorption mechanism, with the Freundlich model providing the best fit, yielding an R2 of 0.962. This result indicates that Hg(II) adsorption onto the surface of MA@NBAL nanobiosorbent occurs on a heterogeneous surface with multilayer formation characteristics. The results of the temperature factor and computation of the thermodynamic parameters referred to endothermic behavior via a nonspontaneous process. Finally, the valid applicability of MA@NBAL nanobiosorbent in the adsorptive recovery of 2.0 and 5.0 µg/mL Hg(II) from contaminated real aquatic matrices was explored in this study, providing 91.2–98.6% removal efficiency. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 5134 KB  
Article
Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues
by Zhiping Yu, Chengqiang Li, Jiashuai Sun, Xia Sun and Guodong Hu
Foods 2023, 12(23), 4363; https://doi.org/10.3390/foods12234363 - 3 Dec 2023
Cited by 4 | Viewed by 2552
Abstract
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS [...] Read more.
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS2), along with acetylene black (AB@CTS) for the rapid detection of malathion residues. Due to the weak interaction force, simple composite may lead to uneven dispersion; MoS2 and AB were dissolved in CTS solution, respectively, and utilized the biocompatibility of CTS to interact with each other on the electrode. The MoS2 nanosheets provided a large specific surface area, enhancing the utilization rate of catalytic materials, while AB exhibited excellent conductivity. Additionally, the dendritic polylysine (PLL) contained numerous amino groups to load abundant luminol to catalyze hydrogen peroxide (H2O2) and generate reactive oxygen species (ROS). The proposed ECL aptasensor obtained a low detection limit of 2.75 × 10−3 ng/mL (S/N = 3) with a good detection range from 1.0 × 10−2 ng/mL to 1.0 × 103 ng/mL, demonstrating excellent specificity, repeatability, and stability. Moreover, the ECL aptasensor was successfully applied for detecting malathion pesticide residues in authentic samples with recovery rates ranging from 94.21% to 99.63% (RSD < 2.52%). This work offers valuable insights for advancing ECL sensor technology in future applications. Full article
(This article belongs to the Special Issue Advanced Biosensor for Rapid Detection of Food Safety)
Show Figures

Figure 1

24 pages, 5880 KB  
Article
Industrial-Scale Technology for Molybdic Acid Production from Waste Petrochemical Catalysts
by Katarzyna Leszczyńska-Sejda, Piotr Dydo and Ewa Szydłowska-Braszak
Materials 2023, 16(17), 5762; https://doi.org/10.3390/ma16175762 - 23 Aug 2023
Cited by 4 | Viewed by 2830
Abstract
The article describes the technology of molybdic acid recovery from spent petrochemical catalysts (HDS) developed and implemented in industrial activity. HDS catalysts contain molybdenum in the form of MoO3 and are used for the hydrodesulfurization of petroleum products. After deactivation, due to [...] Read more.
The article describes the technology of molybdic acid recovery from spent petrochemical catalysts (HDS) developed and implemented in industrial activity. HDS catalysts contain molybdenum in the form of MoO3 and are used for the hydrodesulfurization of petroleum products. After deactivation, due to the impurities content in the form of sulfur, carbon and heavy metals, they constitute hazardous waste and, at the same time, a valuable source of the Mo element, recognized as a critical raw material. The presented technology allows the recovery of molybdic acid with a yield of min. 81%, and the product contains min. 95% H2MoO4. The technology consisted of oxidizing roasting of the spent catalyst, then leaching molybdenum trioxide with aqueous NaOH to produce water-soluble sodium molybdate (Na2MoO4), and finally precipitation of molybdenum using aqueous HCl, as molybdic acid (H2MoO4). Industrial-scale testing proved that the technology could recover Mo from the catalyst and convert it into marketable molybdic acid. This proves that the technology can be effectively used to preserve molybdenum. Full article
Show Figures

Figure 1

20 pages, 3784 KB  
Article
Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations
by Aniekan Magnus Ukpong
Nanomaterials 2023, 13(1), 40; https://doi.org/10.3390/nano13010040 - 22 Dec 2022
Viewed by 2782
Abstract
This paper presents a computational study of the mechanistic models for the laydown of carbon species on nickel surface facets and the burn-off models for their gasification mechanism in methane steam reforming based on density functional theory. Insights into catalyst design strategies for [...] Read more.
This paper presents a computational study of the mechanistic models for the laydown of carbon species on nickel surface facets and the burn-off models for their gasification mechanism in methane steam reforming based on density functional theory. Insights into catalyst design strategies for achieving the simultaneous inhibition of the laydown of polymeric carbon and the promotion of its burn-off are obtained by investigating the influence of single atom dopants on nickel surfaces. The effects of single atom dopants on adsorption energies are determined at both low and high carbon coverages on nickel and used to introduce appropriate thermodynamic descriptors of the associated surface reactions. It is found that the critical size of the nucleating polymeric carbon adatom contains three atoms, i.e., C3. The results show that the burn-off reaction of a polymeric carbon species is thermodynamically limited and hard to promote when the deposited carbon cluster grows beyond a critical size, C4. The introduction of single atom dopants into nickel surfaces is found to modify the structural stability and adsorption energies of carbon adatom species, as well as the free energy profiles of surface reactions for the burn-off reactions when CH4, H2O, H2, and CO species react to form hydrogen. The results reveal that materials development strategies that modify the sub-surface of the catalyst with potassium, strontium, or barium will inhibit carbon nucleation and promote burn-off, while surface doping with niobium, tungsten, or molybdenum will promote the laydown of polymeric carbon. This study provides underpinning insights into the reaction mechanisms for the coking of a nickel catalyst and the gasification routes that are possible for the recovery of a nickel catalyst during the steam reforming of methane for large-scale production of hydrogen. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Hydrogen Production)
Show Figures

Figure 1

12 pages, 3715 KB  
Article
Simple Fabrication of Photodetectors Based on MoS2 Nanoflakes and Ag Nanoparticles
by Peng Xiao, Ju-Hyung Kim and Soonmin Seo
Sensors 2022, 22(13), 4695; https://doi.org/10.3390/s22134695 - 22 Jun 2022
Cited by 1 | Viewed by 2835
Abstract
Low-dimensional transition-metal dichalcogenides (TMDs) have recently emerged as promising materials for electronics and optoelectronics. In particular, photodetectors based on mono- and multilayered molybdenum disulfide (MoS2) have received much attention owing to their outstanding properties, such as high sensitivity and responsivity. In [...] Read more.
Low-dimensional transition-metal dichalcogenides (TMDs) have recently emerged as promising materials for electronics and optoelectronics. In particular, photodetectors based on mono- and multilayered molybdenum disulfide (MoS2) have received much attention owing to their outstanding properties, such as high sensitivity and responsivity. In this study, photodetectors based on dispersed MoS2 nanoflakes (NFs) are demonstrated. MoS2 NFs interact with Ag nanoparticles (NPs) via low-temperature annealing, which plays a crucial role in determining device characteristics such as good sensitivity and short response time. The fabricated devices exhibited a rapid response and recovery, good photo-responsivity, and a high on-to-off photocurrent ratio under visible light illumination with an intensity lower than 0.5 mW/cm2. Full article
(This article belongs to the Special Issue Advanced Materials for Sensing Applications)
Show Figures

Figure 1

22 pages, 5948 KB  
Review
Review of Soil Quality Improvement Using Biopolymers from Leather Waste
by Daniela Simina Stefan, Magdalena Bosomoiu, Annette Madelene Dancila and Mircea Stefan
Polymers 2022, 14(9), 1928; https://doi.org/10.3390/polym14091928 - 9 May 2022
Cited by 12 | Viewed by 4907
Abstract
This paper reviews the advantages and disadvantages of the use of fertilizers obtained from leather waste, to ameliorate the agricultural soil quality. The use of leather waste (hides and skins) as raw materials to obtain biopolymer-based fertilizers is an excellent example of a [...] Read more.
This paper reviews the advantages and disadvantages of the use of fertilizers obtained from leather waste, to ameliorate the agricultural soil quality. The use of leather waste (hides and skins) as raw materials to obtain biopolymer-based fertilizers is an excellent example of a circular economy. This allows the recovery of a large quantity of the tanning agent in the case of tanned wastes, as well as the valorization of significant quantities of waste that would be otherwise disposed of by landfilling. The composition of organic biopolymers obtained from leather waste is a rich source of macronutrients (nitrogen, calcium, magnesium, sodium, potassium), and micronutrients (boron, chloride, copper, iron, manganese, molybdenum, nickel and zinc), necessary to improve the composition of agricultural soils, and to remediate the degraded soils. This enhances plant growth ensuring better crops. The nutrient release tests have demonstrated that, by using the biofertilizers with collagen or with collagen cross-linked with synthetic polymers, the nutrient release can be controlled and slowed. In this case, the loss of nutrients by leaching into the inferior layers of the soil and ground water is minimized, avoiding groundwater contamination, especially with nitrate. Full article
(This article belongs to the Special Issue Recycling and Resource Recovery from Polymers II)
Show Figures

Figure 1

25 pages, 2279 KB  
Article
Metallurgical Wastes as Resources for Sustainability of the Steel Industry
by Dana-Adriana Iluţiu-Varvara and Claudiu Aciu
Sustainability 2022, 14(9), 5488; https://doi.org/10.3390/su14095488 - 3 May 2022
Cited by 34 | Viewed by 11914
Abstract
The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability [...] Read more.
The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability of the steel industry. The purpose of this paper is to assess the chemical and mineralogical compositions of metallurgical wastes landfilled in the Păgida slag dump (Alba County, Romania), for sustainability of the steel industry and metal conservation. The chemical compositions of the two waste samples were analyzed by the XRF (X-ray fluorescence) technique. According to the chemical characterization, magnesium oxide (MgO) has potential to be used as an additional and raw material in the cement industry. The presence of oxides such as CaO, SiO2 FeO and Al2O3 in the compositions of the metallurgical waste samples indicate that they have the potential for use as clinker materials in cement production. The iron and manganese contents from metallurgical wastes can be reused in the iron and steel industry. The presence of V2O5 and TiO2 is connected with the making of stainless steel, and for this reason they have the potential to be reused in the stainless steel industry. The predominant chemical compounds are SiO2, Fetotal, Cao and MgO. The mineralogical compositions were analyzed by the XRD (X-ray diffraction) technique. The mineralogical compounds presenting reuse potential in different domains are Fayalite, Magnetite, Magnesioferrite and Periclase. The mineralogical compounds from metallurgical wastes can be reused as: raw and/or additional materials in the process from which they originate (steelmaking); raw and/or additional materials in road construction and concrete production; pigments in paints; micronutrients in fertilizers; ore of iron, etc. Then, the theoretical assessments of the recovery potentials of the metals were estimated for slag dumps. Copper (Cu), vanadium (V), molybdenum (Mo) and nickel (Ni) have high recovery potential. The total economic value of the recovery potential of metals from slag dumps was assessed to be USD 1175.7440 million. Full article
(This article belongs to the Special Issue Urban and Industrial Solid Waste Management)
Show Figures

Figure 1

22 pages, 16851 KB  
Article
Pulsed FCAW of Martensitic Stainless Clads onto Mild Steel: Microstructure, Hardness, and Residual Stresses
by Joao Sartori Moreno, Fabio Faria Conde, Celso Alves Correa, Luiz Henrique Barbosa, Erenilton Pereira da Silva, Julian Avila, Ricardo Henrique Buzolin and Haroldo Cavalcanti Pinto
Materials 2022, 15(8), 2715; https://doi.org/10.3390/ma15082715 - 7 Apr 2022
Cited by 9 | Viewed by 3605
Abstract
The low carbon martensitic stainless AWS 410NiMo steel has in its chemical composition 13% chromium, 4% nickel, and 0.4% molybdenum (wt.%) and is used in turbine recovery, rotors, and high-pressure steam pump housings due to its resistance to impact at low temperatures, as [...] Read more.
The low carbon martensitic stainless AWS 410NiMo steel has in its chemical composition 13% chromium, 4% nickel, and 0.4% molybdenum (wt.%) and is used in turbine recovery, rotors, and high-pressure steam pump housings due to its resistance to impact at low temperatures, as well as to corrosion and cavitation. Those applications of the AWS 410NiMo steel frequently demand repair, which is performed by welding or cladding. Arc welding is a well-established technique for joining materials and presents several parameters that influence the mechanical performance of the weld bead. Although numerous welding processes exist, optimizing welding parameters for specific applications and materials is always challenging. The present work deals with a systematic study to verify the correlation between the pulsed fluxed core arc welding (FCAW) parameters, namely pulse current and frequency, welding speed, and contact tip work distance (CTWD), and the bead morphology, microstructure formation, residual stress, and hardness of the martensitic clad. The substrate used was the AISI 1020 steel, and the AWS 410NiMo steel was the filler metal for clad deposition. From the initial nine (9) samples, three (3) were selected for in-depth characterization. Lower heat input resulted in lower dilution, more elevated hardness, and lower compressive residual stresses. Therefore, the results highlight the need for selecting the proper heat input, even when using a pulsed FCAW procedure, to achieve the desired performance of the clad. In the present case, a higher heat input appears to be more advantageous owing to the lower convexity index, smooth hardness transition between fusion and heat-affected zones in addition to more elevated compressive stresses. Full article
(This article belongs to the Special Issue Welding and Processing in Alloy Manufacturing)
Show Figures

Figure 1

Back to TopTop