Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = molybdenum and vanadium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6671 KiB  
Article
Hierarchical Microstructure–Mechanical Property Correlations in Superior Strength 5 wt% Cr Cold-Work Tool Steel Manufactured by Direct Energy Deposition
by Jung-Hyun Park, Young-Kyun Kim, Jin-Young Kim, Hyo-Yun Jung, Sung-Jin Park and Kee-Ahn Lee
Materials 2025, 18(13), 3113; https://doi.org/10.3390/ma18133113 - 1 Jul 2025
Viewed by 409
Abstract
The direct energy deposition (DED) metal additive manufacturing process enables rapid deposition and repair, providing an efficient approach to producing durable tool steel components. Here, 5 wt% Cr cold-work tool steel (Caldie) was developed by reducing carbon and chromium to suppress coarse carbide [...] Read more.
The direct energy deposition (DED) metal additive manufacturing process enables rapid deposition and repair, providing an efficient approach to producing durable tool steel components. Here, 5 wt% Cr cold-work tool steel (Caldie) was developed by reducing carbon and chromium to suppress coarse carbide formation and by increasing molybdenum and vanadium to enhance dimensional stability. In this study, Caldie tool steel was fabricated via DED for the first time, and the effects of post-heat treatment on its hierarchical microstructure and mechanical properties were investigated and compared with those of wrought (reference) material. The as-built sample exhibited a mixed microstructure comprising lath martensite, retained austenite, polygonal ferrite, and carbide networks, which transformed into full martensite with fine carbides after heat treatment (DED-HT). The tensile strength of the DED Caldie material increased from 1340 MPa to 1949 MPa after heat treatment, demonstrating superior strength compared to other heat-treated, DED-processed high-carbon tool steels. Compared to DED-HT, the wrought material exhibited finer martensite, a more uniform Bain group distribution, and finer carbides, resulting in higher strength. This study provides insights into the effects of heat treatment on the hierarchical microstructure and mechanical behavior of Caldie tool steel manufactured by DED. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 3137 KiB  
Article
Exothermic and Slag Formation Behavior of Aluminothermic Reduction of Mo and V Oxides
by Xiaoshu Wang, Jinfa Liao, Xiaodong Ma and Baojun Zhao
Metals 2025, 15(7), 704; https://doi.org/10.3390/met15070704 - 25 Jun 2025
Viewed by 378
Abstract
Vanadium (V), molybdenum (Mo), and aluminum (Al) are important alloying elements in titanium alloys, typically introduced through master alloys such as V-Al and Mo-Al. Current preparation of these master alloys predominantly relies on the spontaneous reduction of V2O5 or MoO [...] Read more.
Vanadium (V), molybdenum (Mo), and aluminum (Al) are important alloying elements in titanium alloys, typically introduced through master alloys such as V-Al and Mo-Al. Current preparation of these master alloys predominantly relies on the spontaneous reduction of V2O5 or MoO3 by aluminum. However, separate production and addition of master alloys increase the cost of the titanium alloy. Insufficient understanding of the exothermic behavior and slag-forming process during the aluminothermic reaction often leads to low alloy yield and elevated impurity levels due to splashing and poor alloy–slag separation. This study focused on the controllable aluminothermic reaction of V2O5 and MoO3 to produce high-quality and high-yield V/Al/Mo alloy. Thermodynamic calculations indicate that the reduction of MoO3 to Mo by aluminum is more favorable than the reduction of V2O5 to V. Al% in the V-Al-Mo alloy is crucial for controlling reaction temperature. When the Al/O ratio in the raw materials exceeds 1.0, increasing aluminum reduces both the reaction exothermicity and theoretical reaction temperature. A combination of thermodynamic calculations and high-temperature experiments demonstrates that the heat generation and slag composition can be effectively controlled by Al/O ratio in raw materials. When the Al/O ratio in raw materials is 1.6–2.0, the yields of Mo and V exceed 99% and 95%, respectively. This study provides an effective approach to producing V/Al/Mo alloy under controllable conditions, which shows great potential for other aluminothermic reactions. Extensive solid solutions of V/Al/Mo also provide invaluable data for the optimization of the alloy database. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics Analysis of Metallic Material)
Show Figures

Figure 1

20 pages, 4082 KiB  
Article
Phase Evolution During High-Energy Ball Milling and Annealing of Ti-Doped Mo-V-Si-B Alloys
by Dennis Zang, Julia Becker, Ulf Betke, Georg Hasemann, Kateryna Khanchych, Bronislava Gorr and Manja Krüger
Materials 2025, 18(11), 2494; https://doi.org/10.3390/ma18112494 - 26 May 2025
Viewed by 469
Abstract
Refractory metal-based Mo-Si-B alloys have long been considered the most promising candidates for replacing nickel-based superalloys in the aerospace and energy sector due to their outstanding mechanical properties and good oxidation of the Mo-silicide phases. In general, the addition of vanadium to Mo-Si-B [...] Read more.
Refractory metal-based Mo-Si-B alloys have long been considered the most promising candidates for replacing nickel-based superalloys in the aerospace and energy sector due to their outstanding mechanical properties and good oxidation of the Mo-silicide phases. In general, the addition of vanadium to Mo-Si-B alloys leads to a significant density reduction, while small amounts of titanium provide additional strengthening without changing the phase evolution within the Moss-Mo3Si-Mo5SiB2 phase field. In this work, high-energy ball milling studies on Mo-40V-9Si-8B, substituting both molybdenum and vanadium with 2 and 5 at. % Ti in all constituents, were performed to evaluate the potential milling parameters and investigate the effects of Ti doping on the milling characteristics and phase formation of these multicomponent alloys. After different milling durations, the powders were analysed with regard to their microstructure, particle size, oxygen concentration and microhardness. After heat treatment, the silicide phases (Mo,V)3Si and (Mo,V)5SiB2 precipitated homogeneously within a (Mo,V) solid solution matrix phase. Thermodynamic phase calculations using the CALPHAD method showed good agreement with the experimental phase compositions after annealing, confirming the stability of the observed microstructure. Full article
Show Figures

Figure 1

16 pages, 1742 KiB  
Article
Assessment of Dynamic Surface Leaching of Asphalt Mixtures Incorporating Electric Arc Furnace Steel Slag as Aggregate for Sustainable Road Construction
by Iván Salas, Eva Cifrian, Pedro Lastra-González, Daniel Castro-Fresno and Ana Andrés
Sustainability 2025, 17(8), 3737; https://doi.org/10.3390/su17083737 - 21 Apr 2025
Cited by 1 | Viewed by 619
Abstract
This study evaluated the environmental sustainability of partially replacing natural aggregates with electric arc furnace (EAF) slag in concrete and porous asphalt mixtures. Both the Equilibrium Leaching Test (EN 12457-4) and the Dynamic Surface Leaching Test (DSLT, CEN/TS 16637-2) were applied to analyse [...] Read more.
This study evaluated the environmental sustainability of partially replacing natural aggregates with electric arc furnace (EAF) slag in concrete and porous asphalt mixtures. Both the Equilibrium Leaching Test (EN 12457-4) and the Dynamic Surface Leaching Test (DSLT, CEN/TS 16637-2) were applied to analyse the leaching behaviour of the asphalt mixtures. The results showed that the incorporation of EAF slag led to the release of chromium (Cr), molybdenum (Mo), and vanadium (V), while the type of bitumen affected the dissolved organic carbon (DOC) release. However, when compared to EAF slag leaching, asphalt mixtures exhibited significantly reduced leaching, particularly Cr (by 70%) and V (by 60%). These results indicate that metal leaching follows a diffusion-controlled release mechanism, showing higher concentrations for the porous asphalt compared to the asphalt concrete. The cumulative leaching values at 64 days reached 2.54 mg·m−2 for Cr, 3.29 mg·m−2 for Mo, and 28.67 mg·m−2 for V, far from the limits set by the Dutch Soil Quality Decree (SQD) of 120, 144, and 320 mg·m−2, respectively. Therefore, this study demonstrated that EAF slag is a viable alternative for sustainable road construction, reducing natural resource consumption and promoting the circular economy. Full article
Show Figures

Figure 1

24 pages, 4089 KiB  
Article
Study of the Trace Element Composition of Drinking Water in Almaty City and Human Health Risk Assessment
by Marina Krasnopyorova, Igor Gorlachev, Pavel Kharkin, Mariya Severinenko and Dmitriy Zheltov
Int. J. Environ. Res. Public Health 2025, 22(4), 560; https://doi.org/10.3390/ijerph22040560 - 3 Apr 2025
Cited by 2 | Viewed by 1004
Abstract
This research investigates the elemental composition of 78 drinking water samples collected during the summer, autumn, and winter of 2023 in different districts of Almaty city. Seasonal average concentrations and standard deviations were calculated for a range of chemical elements, including arsenic (As), [...] Read more.
This research investigates the elemental composition of 78 drinking water samples collected during the summer, autumn, and winter of 2023 in different districts of Almaty city. Seasonal average concentrations and standard deviations were calculated for a range of chemical elements, including arsenic (As), beryllium (Be), cobalt (Co), cadmium (Cd), copper (Cu), lithium (Li), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), uranium (U), mercury (Hg), aluminum (Al), barium (Ba), chromium (Cr), iron (Fe), manganese (Mn), strontium (Sr), vanadium (V), zinc (Zn), calcium (Ca), potassium (K), magnesium (Mg), and sodium (Na), across three distinct datasets. The sites of sampling represent various categories of drinking water sources. The quality of drinking water was assessed by comparing the obtained data with current national, international, and World Health Organization (WHO) standards. Drinking water contaminant indices for the heavy metal groups were calculated and the water quality compliance with the hygienic criteria adopted in the Republic of Kazakhstan was determined. With the exception of two sampling points, the levels of non-carcinogenic risk remained below the acceptable threshold. The predominant pathway for exposure for both adults and children was identified as the oral ingestion of hazardous elements. Carcinogenic risks linked to Ni, Pb, and Cr presence in the drinking water of Almaty were identified, with risk values at the majority of sampling sites categorically classified within the “high risk” designation. No substantial differences in carcinogenic risk levels were detected between adults and children. These results underscore the necessity for enhanced water purification methodologies and ongoing surveillance to protect public health. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

23 pages, 9334 KiB  
Article
Sedimentary Environment and Organic Matter Enrichment Mechanism of the Silurian Gaojiabian Black Shales in the Lower Yangtze Region, South China
by Wenjuan Wang, Jianwen Chen, Xiuli Feng, Xiangying Ge, Yinguo Zhang, Jie Liang and Lei Xu
Minerals 2025, 15(3), 204; https://doi.org/10.3390/min15030204 - 21 Feb 2025
Viewed by 567
Abstract
A set of organic-rich black shales has developed in the lower Gaojiabian Formation (Lower Silurian) in the Lower Yangtze region, South China. However, limited research on its paleoenvironment and the mechanisms of organic matter enrichment has hindered further analysis of shale gas exploration [...] Read more.
A set of organic-rich black shales has developed in the lower Gaojiabian Formation (Lower Silurian) in the Lower Yangtze region, South China. However, limited research on its paleoenvironment and the mechanisms of organic matter enrichment has hindered further analysis of shale gas exploration prospects in this area. Utilizing samples from the Akidograptus ascensus to Cystograptus vesiculosus graptolite biozones in the Gaojiabian Formation obtained from well SY-1, we analyzed geochemical elements and pyrite framboids to reconstruct paleoenvironmental characteristics and paleoproductivity, revealing factors influencing organic matter enrichment. The results indicate that the total organic carbon (TOC) content and paleoproductivity levels of the shale are both high, with a significant enrichment of redox-sensitive elements. Additionally, the pyrite framboids are well developed, characterized by small particle sizes and a narrow range of variation. This study reveals that during this period, the region generally developed a perennial oxygen minimum zone (P-OMZ) environment, accompanied by transient euxinic conditions during the Akidograptus ascensus and the early stages of Parakidograptus acuminatus and Cystograptus vesiculosus. This situation represents the extension of the Rhuddanian Oceanic Anoxic Event (R-OAE) into the Lower Yangtze region, where the water body exhibited moderate restrictions. Compared to paleoproductivity indicators, there is a stronger positive correlation between TOC and the redox-sensitive elements vanadium (V), molybdenum (Mo), and uranium (U) in the samples. This finding indicates that the P-OMZ and euxinic environments of the Lower Yangtze Sea were the key factors influencing organic matter enrichment in the Akidograptus ascensus to Cystograptus vesiculosus biozones. Consequently, the overall pattern of organic matter enrichment was predominantly determined by preservation conditions. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

16 pages, 36512 KiB  
Article
Abrasive Wear Characteristics of High-Cr Multicomponent White Cast Irons at Elevated Temperatures
by Mohammad Jobayer Huq, Kazumichi Shimizu and Kenta Kusumoto
Crystals 2025, 15(2), 113; https://doi.org/10.3390/cryst15020113 - 22 Jan 2025
Cited by 1 | Viewed by 1139
Abstract
The abrasive wear phenomenon at elevated temperatures is very common in industries where operations are performed under extreme conditions. The occurrence of abrasive wear at high temperatures is typically far more severe than that under room-temperature conditions. Industrial machine parts are much more [...] Read more.
The abrasive wear phenomenon at elevated temperatures is very common in industries where operations are performed under extreme conditions. The occurrence of abrasive wear at high temperatures is typically far more severe than that under room-temperature conditions. Industrial machine parts are much more prone to wear at extreme temperatures. Wear due to high-temperature abrasion leads to higher costs. Due to the risk of damaging machine parts and increased costs, it is significant to investigate materials that reverse this loss. It has been proven in previous studies that high-chromium white cast irons with multiple components, including vanadium, molybdenum, tungsten, and cobalt, called MWCIs, are among the most useful materials that can be selected as wear-resistant materials at high temperatures because of their dominant behavior against wear. In this study, three series of high-chromium multicomponent white cast irons (18Cr, 27Cr, and 35Cr MWCI) were used to test their abrasive wear resistance capability. A higher percentage of Cr leads to the precipitation of hard M7C3 carbides, which results in a higher carbide volume percentage (CVF) and hence higher hardness. However, the addition of excessive Cr and less C results in carbide refinement and a drop in hardness. The microstructure is primarily austenite. This study shows that, at an operating temperature of 1073 K, the 27CrMWCI performs the best as an abrasive wear-resistant material compared to 18CrMWCI and 35CrMWCI due to its (27CrMWCI’s) higher CVF and hardness. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys)
Show Figures

Figure 1

23 pages, 12935 KiB  
Article
Strain-Controlled Thermal–Mechanical Fatigue Behavior and Microstructural Evolution Mechanism of the Novel Cr-Mo-V Hot-Work Die Steel
by Yasha Yuan, Yichou Lin, Wenyan Wang, Ruxing Shi, Chuan Wu, Pei Zhang, Lei Yao, Zhaocai Jie, Mengchao Wang and Jingpei Xie
Materials 2025, 18(2), 334; https://doi.org/10.3390/ma18020334 - 13 Jan 2025
Viewed by 967
Abstract
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of [...] Read more.
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal–mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel. The thermal–mechanical fatigue (TMF) tests of two test steels were conducted in reverse mechanical strain control at 0.6% and 1.0% strain levels by a TMF servo-hydraulic testing system (MTS). The microstructures of the two steels were characterized using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results indicate that throughout the entire thermomechanical fatigue cycle, both steels exhibit initial hardening during the low-temperature half-cycle (tension half-cycle) and subsequent continuous softening during the high-temperature half-cycle (compression half-cycle). Furthermore, under the same strain condition, the cumulative cyclic softening damage of MES 1 steel is more pronounced than that of the newly developed MES 2 steel. The number, width, and length of cracks in MES 2 steel are smaller than those in MES 1 steel, and the thermomechanical fatigue life of MES 2 steel is significantly longer than that of MES 1 steel. The microstructures show that the main precipitate phase in MES 1 steel is Cr-dominated rod-shaped carbide. It presents obvious coarsening and is prone to inducing stress concentration, thus facilitating crack initiation and propagation. The precipitate phase in MES 2 steel is mainly MC carbide containing Mo and V. It has a high thermal activation energy and is dispersed in the matrix in the form of particles, pinning dislocations and grain boundaries. This effectively delays the reduction in dislocation density and grain growth, thus contributing positively to the improvement in thermomechanical fatigue performance. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

22 pages, 6314 KiB  
Article
Design and Optimization of W-Mo-V High-Speed Steel Roll Material and Its Heat-Treatment-Process Parameters Based on Numerical Simulation
by Zhiting Zhu, Mingyu Duan, Hao Pi, Zhuo Li, Jibing Chen and Yiping Wu
Materials 2025, 18(1), 34; https://doi.org/10.3390/ma18010034 - 25 Dec 2024
Viewed by 899
Abstract
W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were [...] Read more.
W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders. The resulting chemical composition (wt.%) is C 1.9%, W 5.5%, Mo 5.0%, V 5.5%, Cr 4.5%, Si 0.7%, Mn 0.55%, Nb 0.5%, B 0.2%, N 0.06%, and the rest is Fe. This design is distinguished by the inclusion of a high content of molybdenum, vanadium, and trace boron in high-speed steel. When compared to traditional tungsten-based high-speed steel rolls, the addition of these three types of elements effectively improves the wear resistance and red hardness of high-speed steel, thereby increasing the service life of high-speed steel mill-roll covers. JMatPro (version 7.0) simulation software was used to create the composition of W-Mo-V HSS. The phase composition diagrams at various temperatures were examined, as well as the contents of distinct phases within the organization at various temperatures. The influence of austenite content on the martensitic transformation temperature at different temperatures was estimated. The heat treatment parameters for W-Mo-V HSS were optimized. By studying the phase equilibrium of W-Mo-V high-speed steel at different temperatures and drawing CCT diagrams, the starting temperature for the transformation of pearlite to austenite (Ac1 = 796.91 °C) and the ending temperature for the complete dissolution of secondary carbides into austenite (Accm = 819.49 °C) during heating was determined. The changes in carbide content and grain size of W-Mo-V high-speed steel at different tempering temperatures were calculated using JMatPro software. Combined with analysis of Ac1 and Accm temperature points, it was found that the optimal annealing temperatures were 817–827 °C, quenching temperatures were 1150–1160 °C, and tempering temperatures were 550–610 °C. The scanning electron microscopy (SEM) examination of the samples obtained with the aforementioned heat treatment parameters revealed that the martensitic substrate and vanadium carbide grains were finely and evenly scattered, consistent with the simulation results. This suggests that the simulation is a useful reference for guiding actual production. Full article
(This article belongs to the Special Issue Advanced Materials: Process, Properties, and Applications)
Show Figures

Figure 1

19 pages, 2426 KiB  
Article
Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment
by Marina Krasnopyorova, Igor Gorlachev, Pavel Kharkin, Dmitriy Zheltov, Mariya Severinenko and Adilzhan Serikov
Int. J. Environ. Res. Public Health 2024, 21(11), 1511; https://doi.org/10.3390/ijerph21111511 - 14 Nov 2024
Cited by 2 | Viewed by 1683
Abstract
This investigation meticulously examined the elemental composition of 64 water samples collected during the seasons of spring, summer, autumn, and winter of the year 2023. The average seasonal concentrations of arsenic (As), beryllium (Be), cobalt (Co), cadmium (Cd), copper (Cu), lithium (Li), molybdenum [...] Read more.
This investigation meticulously examined the elemental composition of 64 water samples collected during the seasons of spring, summer, autumn, and winter of the year 2023. The average seasonal concentrations of arsenic (As), beryllium (Be), cobalt (Co), cadmium (Cd), copper (Cu), lithium (Li), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), uranium (U), mercury (Hg), aluminum (Al), barium (Ba), chromium (Cr), iron (Fe), manganese (Mn), strontium (Sr), vanadium (V), zinc (Zn), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), and chlorine (Cl) as well as SO4 and dry residue were computed at 16 strategically selected sites along the Bolshaya and Malaya Almatinka, Esentai, and Kargalinka rivers situated in Almaty. The sampling locations were categorized into three distinct sectors: upper (adjacent to mountainous regions), middle (urban zone), and lower (exceeding city limits), thereby facilitating the examination of discrepancies in water quality and elemental concentrations. The results reveal that surface water resources in Almaty, particularly concerning As, Ni, Cr, U, and Pb, may present a considerable carcinogenic risk if utilized for consumption purposes. This is especially alarming given that these rivers constitute a vital source of drinking water for the inhabitants of the city. Specifically, at two sampling locations along the Bolshaya and Malaya Almatinka rivers in proximity to significant urban thoroughfares, untreated river water displayed an elevated carcinogenic risk (CR ~ 10−2). These results highlight the urgent necessity for enhanced water treatment and ongoing monitoring to safeguard public health. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 1508 KiB  
Article
Prolonged Copper Supplementation Modified Minerals in the Kidney, Liver and Blood, and Potentiated Oxidative Stress and Vasodilation of Isolated Aortic Rings in Young Wistar Rats
by Klaudia Kitala-Tańska, Anetta Hanć, Jerzy Juśkiewicz and Michał Majewski
Nutrients 2024, 16(19), 3230; https://doi.org/10.3390/nu16193230 - 24 Sep 2024
Cited by 1 | Viewed by 2043
Abstract
Background: Previous studies have highlighted that copper supplementation at 200% of the recommended daily dietary allowance modified vascular contraction and relaxation through increased reactive oxygen species (ROS) and prostaglandin formation, which modified the antioxidant status of middle-aged Wistar rats. Methods: In this study, [...] Read more.
Background: Previous studies have highlighted that copper supplementation at 200% of the recommended daily dietary allowance modified vascular contraction and relaxation through increased reactive oxygen species (ROS) and prostaglandin formation, which modified the antioxidant status of middle-aged Wistar rats. Methods: In this study, young (1 month old) male Wistar rats (n/group = 10) received a diet supplemented with 6.45 mg copper/kg (100% of daily recommendation—Group A) for 8 weeks. The experimental group received 12.9 mg copper/kg of diet (200% of the daily recommendation—Group B). Results: Experimental supplementation with 200% copper modified the copper concentration in the blood (1.21-fold, p = 0.04), liver (1.15-fold, p = 0.032), and kidneys (1.23-fold, p = 0.045), potentiated the ROS formation in the aortic rings, and enhanced the sensitivity of the aortic rings to the vasodilator acetylcholine. We observed an increased participation of nitric oxide (NO) derived from inducible NO synthase (iNOS) in vascular contraction and a decreased net effect of vasodilator prostanoids derived from cyclooxygenase-2 in vascular relaxation. In rat kidneys, the concentrations of potassium (1.08-fold, p = 0.001) and iron (1.13-fold, p = 0.046) were higher, while, calcium (0.88-fold, p = 0.001) and chromium (0.77-fold, p = 0.005) concentrations were lower. In the rat liver, magnesium (1.06-fold, p = 0.012) was higher. No differences were observed in the concentrations of sodium, zinc, manganese, selenium, cobalt, molybdenum, and vanadium. The antioxidant activity of water- and lipid-soluble compounds; total antioxidant status in the blood; and superoxide dismutase, catalase, and malondialdehyde levels in the heart did not change. Conclusions: In young rats, prolonged supplementation with 200% copper had a lesser effect than anticipated on oxidative stress and vascular reactivity. Detailed data on the status of trace elements and their interactions in patients of different age groups are strongly required for effective nutritional and therapeutic intervention. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

15 pages, 10232 KiB  
Article
Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications
by Kiseok Jeon, Min-Joon Park, Sung-Min Youn, Sangwoo Lim and Chaehwan Jeong
Coatings 2024, 14(8), 975; https://doi.org/10.3390/coatings14080975 - 2 Aug 2024
Viewed by 1127
Abstract
Carrier-selective contacts (CSCs) for high-efficiency heterojunction solar cells have been widely studied due to their advantages of processing at relatively low temperatures and simple fabrication processes. Transition metal oxide (TMO) (e.g., molybdenum oxide, vanadium oxide, and tungsten oxide) thin films are widely used [...] Read more.
Carrier-selective contacts (CSCs) for high-efficiency heterojunction solar cells have been widely studied due to their advantages of processing at relatively low temperatures and simple fabrication processes. Transition metal oxide (TMO) (e.g., molybdenum oxide, vanadium oxide, and tungsten oxide) thin films are widely used as hole-selective contacts (HSCs, required work function for Si solar cells > 5.0 eV). However, when TMO thin films are used, difficulties are faced in uniform deposition. In this study, we fabricated a copper (I) iodide (CuI) thin film (work function > 5.0 eV) that remained relatively stable during atmospheric exposure compared with TMO thin films and employed it as an HSC layer in an n-type Si solar cell. To facilitate efficient hole collection, we conducted iodine annealing at temperatures of 100–180 °C to enhance the film’s electrical characteristics (carrier density and carrier mobility). Subsequently, we fabricated CSC Si solar cells using the annealed CuIx layer, which achieved an efficiency of 6.42%. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

20 pages, 6013 KiB  
Article
Molybdenum and Vanadium-Codoped Cobalt Carbonate Nanosheets Deposited on Nickel Foam as a High-Efficient Bifunctional Catalyst for Overall Alkaline Water Splitting
by Wenxin Wang, Lulu Xu, Ruilong Ye, Peng Yang, Junjie Zhu, Liping Jiang and Xingcai Wu
Molecules 2024, 29(15), 3591; https://doi.org/10.3390/molecules29153591 - 30 Jul 2024
Cited by 1 | Viewed by 1500
Abstract
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt [...] Read more.
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt carbonate nanosheets loaded on nickel foam (VMoCoCOx@NF) are fabricated by facile hydrothermal deposition. Firstly, the mole ratio of V/Mo/Co in the composite is optimized by response surface methodology (RSM). When the optimized composite serves as a bifunctional catalyst, the water-splitting current density achieves 10 mA cm−2 and 100 mA cm−2 at cell voltages of 1.54 V and 1.61 V in a 1.0 M KOH electrolyte with robust stability. Furthermore, characterization is carried out using field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations reveal that the fabricated VMoCoCOx@NF catalyst synergistically decreases the Gibbs free energy of hydrogen and oxygen-containing intermediates, thus accelerating OER/HER catalytic kinetics. Benefiting from the concerted advantages of porous NF substrates and clustered VMoCoCOx nanosheets, the fabricated catalyst exhibits superior electrocatalytic performance. This work presents a novel approach to developing transition metal catalysts for overall water splitting. Full article
Show Figures

Graphical abstract

12 pages, 14655 KiB  
Article
Configurational Isomerism in Bimetallic Decametalates
by Aleksandar Kondinski
Materials 2024, 17(14), 3624; https://doi.org/10.3390/ma17143624 - 22 Jul 2024
Viewed by 916
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the [...] Read more.
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)–vanadium(V) systems MoxV10xO288 for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal–metal bonding. The particular polyoxometalate structure is of interest for further experimental studies. Full article
(This article belongs to the Special Issue From Molecular to Supramolecular Materials)
Show Figures

Graphical abstract

19 pages, 11907 KiB  
Article
Examination of Novel Titanium-639 Alloy as a Means of Balancing Strength and Ductility through Molybdenum Addition Rather than Prolonged Aging Heat Treatment
by Shiraz Mujahid, Alireza Fadavi Boostani, YubRaj Paudel, Andrew Oppedal, Bhasker Paliwal, Hongjoo Rhee and Haitham El Kadiri
Metals 2024, 14(7), 828; https://doi.org/10.3390/met14070828 - 18 Jul 2024
Viewed by 1551
Abstract
Manufacturing titanium alloys with simultaneous enhancement in strength and ductility has motivated extensive research into various strategies for regulating the arrangement and texture of α and β phases. The present study explores a novel α + β titanium alloy, TIMETAL 639 (Ti-639), produced [...] Read more.
Manufacturing titanium alloys with simultaneous enhancement in strength and ductility has motivated extensive research into various strategies for regulating the arrangement and texture of α and β phases. The present study explores a novel α + β titanium alloy, TIMETAL 639 (Ti-639), produced by replacing a portion of vanadium in Ti-64 with molybdenum. The low diffusivity and β-stabilizing effects of molybdenum help retain bimodal characteristics within solution heat-treated Ti-639 microstructures. EBSD and TEM were used to examine β-phase evolution after thermal processing and recrystallization of new globular α grains within pre-existing colonies in a depleted bimodal microstructure. These depleted bimodal colonies in solution heat-treated Ti-639 also led to lower misorientation spreads and dislocation densities within neighboring primary α grains. Quasi-static compression along the plate normal direction demonstrated the ability of the depleted bimodal microstructure to simultaneously enhance strength and ductility in Ti-639 (~90 MPa stronger, ~6% higher failure strain) versus identically processed Ti-64. Only one solution heat-treatment step (1 h at 900 °C) is needed to achieve these properties in Ti-639, whereas comparable properties in Ti-64 required prolonged aging heat treatment (24 h at 600 °C) after the same solution heat-treatment step, making Ti-639 a viable α + β alloy candidate. Full article
(This article belongs to the Special Issue Alloy Design and Its Performance Trade-Offs)
Show Figures

Figure 1

Back to TopTop