Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = modular heat pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 30373 KiB  
Article
Experimental Investigation of Heat Pump Modules Limited to 150 g of Refrigerant R290 and a Dedicated Test Rig
by Stephan Preisinger, Michael Lauermann, Micha Schwarzfurtner, Sebastian Fischer, Stephan Kling, Heinz Moisi and Christoph Reichl
Energies 2025, 18(10), 2455; https://doi.org/10.3390/en18102455 - 10 May 2025
Cited by 1 | Viewed by 417
Abstract
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite [...] Read more.
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite its immense potential to lower urban greenhouse gas emissions. To address this, the following paper describes the development of a compact, modular heat pump system designed to replace conventional gas boilers, focusing on the building and testing of a prototype for such a modular heat pump system. The prototype supports multiple functionalities, including space heating, cooling, and domestic hot water production. The performance advantages of two different compressor technologies were exploited to optimize the efficiency of the complete system and the pressure lifts associated with applications for heating and domestic hot water production. Thus, measurements were conducted across a range of operating points, comparing different heat pump module types. In the case of the piston compressor module, the Carnot efficiency was in the range of 47.2% to 50.4%. The total isentropic efficiency for floor heating and domestic hot water production was above 0.45 for both piston and rotary compressors. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

20 pages, 14968 KiB  
Article
Plasma Photocatalysis: A Novel Approach for Enhanced Air Disinfection in Centralised Ventilation Systems
by Hanna Koshlak, Leonid Lobanov, Borys Basok, Tetyana Hrabova and Pavlo Goncharov
Materials 2025, 18(8), 1870; https://doi.org/10.3390/ma18081870 - 19 Apr 2025
Viewed by 516
Abstract
The COVID-19 pandemic highlighted the urgent need for sustainable and scalable air disinfection technologies in HVAC systems, addressing the limitations of energy-intensive and chemically intensive conventional methods. This study developed and evaluated a pilot experimental installation integrating plasma chemistry and photocatalysis for airborne [...] Read more.
The COVID-19 pandemic highlighted the urgent need for sustainable and scalable air disinfection technologies in HVAC systems, addressing the limitations of energy-intensive and chemically intensive conventional methods. This study developed and evaluated a pilot experimental installation integrating plasma chemistry and photocatalysis for airborne pathogen and pollutant mitigation. The installation, designed with a modular architecture to simulate real-world HVAC dynamics, employed a bipolar plasma ioniser, a TiO2 photocatalytic module, and an adsorption-catalytic module for ozone abatement. Characterization techniques, including SEM and BET analysis, were used to evaluate the morphology and surface properties of the catalytic materials. Field tests in a production room demonstrated a 60% reduction in airborne microflora in three days, along with effective decomposition of ozone. The research also determined the optimal electrode geometry and interelectrode distance for stable corona discharge, which is essential for efficient plasma generation. Energy-efficient design considerations, which incorporate heat recovery and heat pump integration, achieved a 7–8-fold reduction in air heating energy consumption. These results demonstrate the potential of integrated plasma photocatalysis as a sustainable and scalable approach to enhance indoor air quality in centralised HVAC systems, contributing to both public health and energy efficiency. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Figure 1

20 pages, 5442 KiB  
Article
Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications)
by Suleivys M. Nuñez, Felipe E. Trujillo Preuss and Yunesky Masip Macía
Appl. Sci. 2024, 14(9), 3690; https://doi.org/10.3390/app14093690 - 26 Apr 2024
Cited by 1 | Viewed by 2003
Abstract
This paper presents a numerical model for thermal energy storage systems’ design, development, and feasibility. The energy storage was composed of a tank that stores phase change material (AlSi12) and internal pipes with heat transfer fluid (Cerrolow 117), coupled to a power block [...] Read more.
This paper presents a numerical model for thermal energy storage systems’ design, development, and feasibility. The energy storage was composed of a tank that stores phase change material (AlSi12) and internal pipes with heat transfer fluid (Cerrolow 117), coupled to a power block to dispatch electrical energy on a small scale for off-grid industrial applications. Subsequently, the evolution of the temperature in charge/discharge cycles, temperature degradation, and storage efficiency was determined with the appropriate magnitudes and behavior through the resolution of a numerical model. In addition, for the proposed electric power generation plant for an off-grid pumping system in the mining industry of Chile, a numerical model was developed using the finite volumes method to simulate the thermocline performance. As a result, the temperature history reflects stable thermal behavior, low degradation, and high efficiency of approximately 92%, with a storage time increasing up to 13 [h] and 384.8 [kWh] capacity. Also, implementation was feasible on a small scale due to its compact, modular, and economically competitive characteristics in a concentrated solar power plant. Finally, the proposed design was proven to be an accurate and reliable alternative for small-scale off-grid mining applications. Full article
Show Figures

Figure 1

21 pages, 6109 KiB  
Article
Selection of Renewable Energy Sources for Modular and Mobile “Green Classroom” Facilities
by Tomasz Węgiel, Dariusz Borkowski, Rafał Blazy, Agnieszka Ciepiela, Mariusz Łysień, Jakub Dudek, Jakub Błachut, Hanna Hrehorowicz-Gaber and Alicja Hrehorowicz-Nowak
Energies 2024, 17(9), 2033; https://doi.org/10.3390/en17092033 - 25 Apr 2024
Cited by 1 | Viewed by 1119
Abstract
This article aims to demonstrate the technical capabilities and effectiveness of an energy production and management system for school facilities using a modular solution. The system is assumed to generate electricity from renewable sources, such as wind or sun. The potential of renewable [...] Read more.
This article aims to demonstrate the technical capabilities and effectiveness of an energy production and management system for school facilities using a modular solution. The system is assumed to generate electricity from renewable sources, such as wind or sun. The potential of renewable energy sources in Cracow, Poland, was assessed, with a focus on solar energy (photovoltaic panels, PV). Taking into account the installation of heating and other equipment, an analysis of the facility’s electricity demand was carried out. The study recommended the use of a heat pump system to heat and cool the facility. Renewable energy sources will meet 81% of the facility’s projected annual demand, according to the study. An analysis of the energy consumption and production profiles shows that almost 69% of the energy produced by the PV panels is consumed on site. Of the remaining energy, 31% is fed back into the grid and sold to the grid operator or used by other facilities within the shared settlement. The overall balance results in a small electricity deficit that must be covered by the grid. If suitable sites are available, the facilities under study could consider installing a wind turbine as a potential supplement to the energy deficit. Full article
Show Figures

Figure 1

25 pages, 6672 KiB  
Article
Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology
by Henryk Łukowicz, Łukasz Bartela, Paweł Gładysz and Staffan Qvist
Energies 2023, 16(7), 3083; https://doi.org/10.3390/en16073083 - 28 Mar 2023
Cited by 17 | Viewed by 4228
Abstract
This article presents the results of a techno-economic analysis of repowering a coal-fired power plant’s steam turbine system to instead accept heat produced by a pressurized water reactor-type small modular nuclear system (PWR SMR). This type of repowering presents a challenge due to [...] Read more.
This article presents the results of a techno-economic analysis of repowering a coal-fired power plant’s steam turbine system to instead accept heat produced by a pressurized water reactor-type small modular nuclear system (PWR SMR). This type of repowering presents a challenge due to the significantly lower steam pressure and temperature produced by the nuclear system. A 460 MW supercritical power unit with steam parameters of 28 MPa/560 °C/580 °C, operated in the Łagisza Power Plant in Poland, was selected for the analysis. After repowering, the turbine system would be fed with saturated steam from the steam generators of the SMRs at a pressure of 7 MPa and a temperature of 285 °C. In total, four options for repowering were analyzed. In all cases, the existing high-pressure section of the turbine was disconnected, and the existing low-pressure stages of the turbine, as well as all auxiliary and outward components (feedwater heaters, pumps, generator, condenser, condenser cooling, etc.), are re-used in their existing configurations, except for a feedwater-heater pump that needs to be replaced. In three cases, the existing intermediate pressure turbine section acts as the high-pressure stage of the repowered system. These cases include repowering without an additional reheater (case A), with an added single-stage reheater (B) and with an added two-stage reheater (C). In the fourth case (D), the existing intermediate pressure section was replaced by a new high-pressure turbine stage suited to the SMR live steam conditions. While all four repowering options are technically possible and may represent an economic advantage compared to a complete greenfield SMR installation, option D with a new high-pressure stage is clearly the best option available, with significant cost savings, leading to a lower levelized cost of electricity (LCOE) and a higher net present value (NPV) and net present value ratio (NPVR) than the greenfield case and all other repowering. For relatively new coal power plants with equipment in good condition, this type of repowering may present a cost optimal near-term pathway. Full article
(This article belongs to the Topic Nuclear Energy Systems)
Show Figures

Figure 1

14 pages, 1945 KiB  
Article
A Modified JFNK for Solving the HTR Steady State Secondary Circuit Problem
by Zhuo Jiang, Yingjie Wu, Han Zhang, Lixun Liu, Jiong Guo and Fu Li
Energies 2023, 16(5), 2252; https://doi.org/10.3390/en16052252 - 26 Feb 2023
Cited by 3 | Viewed by 1646
Abstract
A nuclear power plant is a complex coupling system, which features multi-physics coupling between reactor physics and thermal-hydraulics in the reactor core, as well as the multi-circuit coupling between the primary circuit and the secondary circuit by the shared steam generator (SG). Especially [...] Read more.
A nuclear power plant is a complex coupling system, which features multi-physics coupling between reactor physics and thermal-hydraulics in the reactor core, as well as the multi-circuit coupling between the primary circuit and the secondary circuit by the shared steam generator (SG). Especially in the pebble-bed modular HTR nuclear power plant, different nuclear steam supply modules are further coupled together through the shared main steam pipes and the related equipment in the secondary circuit, since the special configuration of multiple reactor modules connects to a steam turbine. The JFNK (Jacobian-Free Newton–Krylov) method provides a promising coupling framework to solve the whole HTR nuclear power plant problem, due to its excellent convergence rate and strong robustness. In this work, the JFNK method was modified and applied to the steady-state calculation of the HTR secondary circuit, which plays an important role in simultaneous solutions for the whole HTR nuclear power plant. The main components in the secondary circuit included SG, steam turbine, condenser, feed pump, high/low-pressure heat exchanger, deaerator, as well as the extraction steam from the steam turbine. The results showed that the JFNK method can effectively solve the steady state issue of the HTR secondary circuit. Moreover, the JFNK method could converge well within a wide range of initial values, indicating its strong robustness. Full article
Show Figures

Figure 1

18 pages, 4308 KiB  
Article
A Small Modular House as a Response to the Energy Crisis
by Miroslaw Zukowski
Energies 2022, 15(21), 8058; https://doi.org/10.3390/en15218058 - 29 Oct 2022
Cited by 4 | Viewed by 2543
Abstract
Energy security is becoming one of the most important issues today. Continuous increases in the prices of fossil fuels, firewood and wood pellets have become commonplace in many countries. One positive effect of this situation is the greater focus on the development of [...] Read more.
Energy security is becoming one of the most important issues today. Continuous increases in the prices of fossil fuels, firewood and wood pellets have become commonplace in many countries. One positive effect of this situation is the greater focus on the development of renewable energy technologies and the search for solutions to reduce the heat demands of residential buildings. The purpose of this paper is to present a small modular building that can be a response to the energy crisis and Ukraine’s wave of refugees in Poland. The results of the energy simulations performed in DesignBuilder software showed that this type of house has a primary energy demand of 139.35 kWh/m2. The calculations were performed for the climatic conditions of north-eastern Poland, assuming natural gas as the fuel. The use of a geothermal heat pump reduced this value to 90.14 kWh/m2. In order to achieve a zero primary energy balance, 23.76 m2 of PV panels and 4 m2 of solar thermal collectors should be installed. In addition, the influence of the overhangs and the glazing area on the heat gain from the solar radiation was analyzed. A drop in temperature inside the house in the event of a continuous power failure was also investigated. Full article
(This article belongs to the Special Issue Internal Environment and Thermal Performance of Buildings)
Show Figures

Figure 1

25 pages, 4336 KiB  
Article
Coupling Chemical Heat Pump with Nuclear Reactor for Temperature Amplification by Delivering Process Heat and Electricity: A Techno-Economic Analysis
by Aman Gupta, Piyush Sabharwall, Paul D. Armatis, Brian M. Fronk and Vivek Utgikar
Energies 2022, 15(16), 5873; https://doi.org/10.3390/en15165873 - 13 Aug 2022
Cited by 2 | Viewed by 2799
Abstract
The energy economy is continually evolving in response to socio-political factors in the nature of primary energy sources, their conversions to useful forms, such as electricity and heat, and their utilization in different sectors. Nuclear energy has a crucial role to play in [...] Read more.
The energy economy is continually evolving in response to socio-political factors in the nature of primary energy sources, their conversions to useful forms, such as electricity and heat, and their utilization in different sectors. Nuclear energy has a crucial role to play in the evolution of energy economy due to its clean and non-carbon-emitting characteristics. A techno-economic analysis was undertaken to establish the viability of selling heat along with electricity for an advanced 100 MWth small modular reactor (SMR) and four nuclear hybrid energy system (NHES) configurations featuring the SMR paired with chemical heat pump (ChHP) systems providing a thermal output ranging from 1 to 50 MWth. Net present value, payback period, discounted cash flow rate of return, and levelized cost of energy were evaluated for these systems for different regions of U.S. reflecting a range of electricity and thermal energy costs. The analysis indicated that selling heat to high temperature industrial processes showed profitable outcomes compared to the sale of only electricity. Higher carbon taxes improved the economic parameters of the NHES alternatives significantly. Providing heat to high temperature industries could be very beneficial, helping to cut down the greenhouse gases emission by reducing the fossil fuel consumption. Full article
Show Figures

Figure 1

14 pages, 7894 KiB  
Article
Development of a Low-Depth Modular GHX through a Real-Scale Experiment
by Kwonye Kim, Sangmu Bae, Yujin Nam, Euyjoon Lee and Evgueniy Entchev
Energies 2022, 15(3), 698; https://doi.org/10.3390/en15030698 - 18 Jan 2022
Cited by 4 | Viewed by 2006
Abstract
The global energy sector is aiming to rapidly transform energy systems into those less dependent on fossil fuels to reduce their harmful effects on the climate. Although ground source heat pump (GSHP) systems are more efficient than conventional air-source heat pump (ASHP) systems, [...] Read more.
The global energy sector is aiming to rapidly transform energy systems into those less dependent on fossil fuels to reduce their harmful effects on the climate. Although ground source heat pump (GSHP) systems are more efficient than conventional air-source heat pump (ASHP) systems, the high initial investment cost, particularly for a vertical closed-loop type ground heat exchanger (GHX), makes it difficult to incorporate them into small buildings. This paper proposes a low-depth modular GHX for reducing cost and improving the workability of GSHPs. A modular GHX is a cubical structure comprising tubes and buried using an excavator at a depth 4 m below the ground surface. This GHX is manufactured at a factory, carried by a small truck, and then installed by a small lift or a backhoe such that it can be installed in small buildings or narrow spaces at low depths underground. In this research, the performance and feasibility analyses of modular and vertical GHXs were conducted via a real-scale experiment. The results demonstrate that the modular GHX influences the workability of GSHPs by 91% during the heating period and 70% during the cooling period. In contrast to the conventional HVAC, the modular and vertical GHXs could recover the initial investment costs in 4 years and 10 years, respectively. Full article
(This article belongs to the Topic Sustainable Energy Technology)
Show Figures

Figure 1

15 pages, 3515 KiB  
Article
A Fast-Reduced Model for an Innovative Latent Thermal Energy Storage for Direct Integration in Heat Pumps
by Valeria Palomba and Andrea Frazzica
Appl. Sci. 2021, 11(19), 8972; https://doi.org/10.3390/app11198972 - 26 Sep 2021
Cited by 2 | Viewed by 2253
Abstract
In the present paper, the numerical modeling of an innovative latent thermal energy storage unit, suitable for direct integration into the condenser or evaporator of a heat pump is presented. The Modelica language, in the Dymola environment, and TIL libraries were used for [...] Read more.
In the present paper, the numerical modeling of an innovative latent thermal energy storage unit, suitable for direct integration into the condenser or evaporator of a heat pump is presented. The Modelica language, in the Dymola environment, and TIL libraries were used for the development of a modular model, which is easily re-usable and adaptable to different configurations. Validation of the model was carried out using experimental data under different operating modes and it was subsequently used for the optimization of a design for charging and discharge. In particular, since the storage unit is made up of parallel channels for the heat transfer fluid, refrigerant, and phase change material, their number and distribution were changed to evaluate the effect on heat transfer performance. Full article
(This article belongs to the Special Issue Modelling Advanced Materials and Systems for Thermal Energy Storage)
Show Figures

Figure 1

20 pages, 3281 KiB  
Article
Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump
by Jesús García-Domínguez and J. Daniel Marcos
Energies 2021, 14(16), 4770; https://doi.org/10.3390/en14164770 - 5 Aug 2021
Cited by 5 | Viewed by 3205
Abstract
Modular and scalable distributed generation solutions as combined cooling, heating and power (CCHP) systems are currently a promising solution for the simultaneous generation of electricity and useful heating and cooling for large buildings or industries. In the present work, a solar-heated trigeneration approach [...] Read more.
Modular and scalable distributed generation solutions as combined cooling, heating and power (CCHP) systems are currently a promising solution for the simultaneous generation of electricity and useful heating and cooling for large buildings or industries. In the present work, a solar-heated trigeneration approach based on different organic Rankine cycle (ORC) layouts and a single-effect H2O/LiBr absorption heat pump integrated as a bottoming cycle is analysed from the thermodynamic viewpoint. The main objective of the study is to provide a comprehensive guide for selecting the most suitable CCHP configuration for a solar-heated CCHP system, following a systematic investigation approach. Six alternative CCHP configurations based on single-pressure and dual-pressure ORC layouts, such as simple, recuperated and superheated cycles, and their combinations, and seven organic fluids as working medium are proposed and compared systematically. A field of solar parabolic trough collectors (SPTCs) used as a heat source of the ORC layouts and the absorption heat pump are kept invariant. A comprehensive parametric analysis of the different proposed configurations is carried out for different design operating conditions. Several output parameters, such as energy and exergy efficiency, net electrical power and electrical to heating and cooling ratios are examined. The study reveals that the most efficient CCHP configuration is the single-pressure ORC regenerative recuperated superheated cycle with toluene as a working fluid, which is on average 25% and 8% more efficient than the variants with single-pressure simple cycle and the dual-pressure recuperated superheated cycle, respectively. At nominal design conditions, the best performing CCHP variant presents 163.7% energy efficiency and 12.3% exergy efficiency, while the electricity, cooling and heating productions are 56.2 kW, 223.0 kW and 530.1 kW, respectively. Full article
(This article belongs to the Topic Multi-Energy Systems)
Show Figures

Figure 1

13 pages, 1594 KiB  
Article
Transformational Steam Infusion Processing for Resilient and Sustainable Food Manufacturing Businesses
by Christopher Brooks, Mark Swainson, Ian Beauchamp, Isabel Campelos, Ruzaina Ishak and Wayne Martindale
Foods 2021, 10(8), 1763; https://doi.org/10.3390/foods10081763 - 30 Jul 2021
Cited by 6 | Viewed by 5195
Abstract
Here we show how food and beverage manufacturers report more incisive sustainability and product fulfilment outcomes for their business enterprises when innovative processing technologies are used. The reported steam infusion technology heats food materials within a Vaction Pump device so that steam is [...] Read more.
Here we show how food and beverage manufacturers report more incisive sustainability and product fulfilment outcomes for their business enterprises when innovative processing technologies are used. The reported steam infusion technology heats food materials within a Vaction Pump device so that steam is directed into the food material within a much reduced volume, reducing the use of steam and processing time. This study reports how such technological interventions will enable supply chain stakeholders to demonstrate responsible consumption by connecting assessments for the reduction of greenhouse gas emissions with consumer-focused outcomes such as product quality. The technology reported in this research not only improves operational agility by improving processing speed, but also improves the responsiveness of factory production to changes in demand. Heating procedures are systemic processes in the food industry that can be used to pasteurize, achieve commercially viable shelf-life, and provide cleaning in place. The reported research defines how these technologies can reduce the carbon footprint of products, improve quality attributes, and lower operating costs across supply chains. They provide an important step in developing distributed manufacturing in the food system because the technologies reported here are modular and can be installed into existing operations. The specific technology can reduce energy consumption by 17.3% compared to basic direct steam heating, with a reduction of 277.8 processing hours and 8.7 tonnes GHG emissions per kettle production line each year. Food and beverage manufacturers are increasingly required to report across the sustainability, nutrition, and product quality outcomes of their business enterprises more incisively so that supply chain stakeholders can demonstrate responsible production and consumption. The steam infusion technologies assessed in this research enable alignment to the UN Sustainable Development Goals, specifically SDG12, Responsible Production and Consumption, using in situ data logging in factory trials for novel heating procedures used to process foods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

17 pages, 6214 KiB  
Article
Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps
by Steven Metcalf, Ángeles Rivero-Pacho and Robert Critoph
Energies 2021, 14(11), 3332; https://doi.org/10.3390/en14113332 - 5 Jun 2021
Cited by 6 | Viewed by 3178
Abstract
Gas-fired heat pumps are a potential replacement for condensing boilers, utilizing fossil-fuel resources more efficiently and reducing the amount of biogas or hydrogen required in sustainable gas grids. However, their adoption has been limited due to their large size and high capital cost, [...] Read more.
Gas-fired heat pumps are a potential replacement for condensing boilers, utilizing fossil-fuel resources more efficiently and reducing the amount of biogas or hydrogen required in sustainable gas grids. However, their adoption has been limited due to their large size and high capital cost, resulting in long payback times. For adsorption-based heat pumps, the major development challenge is to maximize the rate of heat transfer to the adsorbent, whilst minimizing the thermal mass. This work develops a modular finned-tube carbon–ammonia adsorption generator that incorporates the adsorbent in highly compacted 3-mm layers between aluminum fins. Manufacturing techniques that are amenable to low cost and high-volume production were developed. The module was tested using the large temperature jump (LTJ) method and achieved a time constant for adsorption and desorption of 50 s. The computational model predicted that if incorporated into two adsorption generators of 6 L volume each, they could be used to construct a gas-fired heat pump with a 10 kW heat output and a gas utilization efficiency (GUE, the ratio of useful heat output to higher calorific value of gas used) of 1.2. Full article
(This article belongs to the Special Issue Advances on Adsorption Heat Pumps, Stores and Systems)
Show Figures

Graphical abstract

17 pages, 1113 KiB  
Article
Upgrading a District Heating System by Means of the Integration of Modular Heat Pumps, Geothermal Waters, and PVs for Resilient and Sustainable Urban Energy
by Elżbieta Hałaj, Jarosław Kotyza, Marek Hajto, Grzegorz Pełka, Wojciech Luboń and Paweł Jastrzębski
Energies 2021, 14(9), 2347; https://doi.org/10.3390/en14092347 - 21 Apr 2021
Cited by 15 | Viewed by 3576
Abstract
Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of [...] Read more.
Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of the city is based on coal. The paper presents the conception of using the available renewable sources to integrate them into the city’s heating system, increasing the flexibility of the system and its decentralization. An innovative solution of the use of hybrid, modular heat pumps with power dependent on the needs of customers in a given location and combining them with geothermal waters and photovoltaics is presented. The potential of deep geothermal waters is based on two reservoirs built of carbonate rocks, namely Devonian and Upper Jurassic, which mainly consist of dolomite and limestone. The theoretical potential of water intake equal to the nominal heating capacity of a geothermal installation is estimated at 3.3 and 2.0 MW, respectively. Shallow geothermal energy potential varies within the city, reflecting the complex geological structure of the city. Apart from typical borehole heat exchangers (BHEs), the shallower water levels may represent a significant potential source for both heating and cooling by means of water heat pumps. For the heating network, it has been proposed to use modular heat pumps with hybrid sources, which will allow for the flexible development of the network in places previously unavailable or unprofitable. In the case of balancing production and demand, a photovoltaic installation can be an effective and sufficient source of electricity that will cover the annual electricity demand generated by the heat pump installation, when it is used for both heating and cooling. The alternating demand of facilities for heating and cooling energy, caused by changes in the seasons, suggests potential for using seasonal cold and heat storage. Full article
Show Figures

Figure 1

13 pages, 6445 KiB  
Article
Analysis of Heat Exchange Rate for Low-Depth Modular Ground Heat Exchanger through Real-Scale Experiment
by Kwonye Kim, Jaemin Kim, Yujin Nam, Euyjoon Lee, Eunchul Kang and Evgueniy Entchev
Energies 2021, 14(7), 1893; https://doi.org/10.3390/en14071893 - 29 Mar 2021
Cited by 10 | Viewed by 2626
Abstract
A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into [...] Read more.
A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings. Full article
(This article belongs to the Special Issue Renewable Energy Systems for Buildings)
Show Figures

Figure 1

Back to TopTop