Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = mixed polymicrobial biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2639 KB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 1066
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

13 pages, 1669 KB  
Review
A One- or Two-Stage Revision of Fungal Prosthetic Joint Infection: A Review of Current Knowledge, Pitfalls and Recommendations
by Hazem Alkhawashki, Joseph Benevenia, Lorenzo Drago and Yazan Kadkoy
Antibiotics 2025, 14(7), 658; https://doi.org/10.3390/antibiotics14070658 - 30 Jun 2025
Cited by 2 | Viewed by 1581
Abstract
Fungal prosthetic joint infection (fPJI) is one of the orthopaedic pathologies where there is no clear evidence, guidelines or algorithm to guide the surgeon in its management. This is in addition to the difficulty with which these infections are diagnosed, isolated and treated. [...] Read more.
Fungal prosthetic joint infection (fPJI) is one of the orthopaedic pathologies where there is no clear evidence, guidelines or algorithm to guide the surgeon in its management. This is in addition to the difficulty with which these infections are diagnosed, isolated and treated. Fungi form notorious biofilms that are difficult to eradicate once formed and that display resistance to antimicrobial agents. These biofilms have been shown to act synergistically with biofilms of bacteria, further adding to medical treatment resistance. We have reviewed the literature for reports that describe the results of different methods in surgically treating fPJI. We found that surgical management with two stages remains the gold standard for treatment of fPJI, as is the case for bacterial PJI (bPJI). We have investigated medical treatment, debridement with implant retention (DAIR) and staged revisions and whether a reasonable recommendation can be made based on the best knowledge and practice available. From the data on bPJI, there exists a role for conservative management of acute PJI with debridement, antibiotics and implant retention (DAIR). While fPJI and bPJI both represent infections, the differences in our ability to detect these infections clinically, culture the pathogens and treat them with proper antimicrobial agents, along with the difference in the reported results of the surgical treatment, make us believe that these two types of infections should not be treated in the same manner. With all this in mind, we reviewed several reports in the literature on fPJI to determine the efficacy of current treatment modalities, including DAIR, which followed current guidelines for PJI. Data show an overall treatment success rate of 64.4% [range 17.4–100%]. Subgroup analysis revealed a success rate of 11.6% [range 0–28.7%] in patients treated with DAIR. There is no doubt that DAIR should not be encouraged as it consistently has a bad record. Although there are not enough studies or numbers of patients to show an evidence-based preference over one- or two-staged revisions, the two-stage revision of fPJI consistently shows better results and should be considered as the gold standard of management in cases of revision fPJI. This should also be coupled with proper expertise, follow-ups and recommended lengths of medical treatment, which should not be less than six months. From the review of these data, we have developed reasonable recommendations for the management of fPJI. These recommendations center on staged surgical debridement along with medical management. Medical treatment should be for at least 6 months under the guidance of an infectious disease team and based on intraoperative cultures. In the case of local antimicrobial treatment reported in the literature, many patients with fPJI were found to have a polymicrobial infection. As a result, it is our recommendation that antifungals as well as antibacterials should be incorporated into the cement spacer mix of these cases. Fungal PJI remains an exceedingly difficult pathology to treat and should be managed by experienced surgeons in a well-equipped institution. Full article
Show Figures

Figure 1

18 pages, 682 KB  
Review
Antimicrobial Efficacy of Nd:YAG Laser in Polymicrobial Root Canal Infections: A Systematic Review of In Vitro Studies
by Jakub Fiegler-Rudol, Dariusz Skaba and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(12), 5631; https://doi.org/10.3390/ijms26125631 - 12 Jun 2025
Cited by 2 | Viewed by 1391
Abstract
Endodontic infections are characterized by complex polymicrobial communities residing within the intricate root canal system. Traditional chemomechanical methods frequently fail to achieve complete microbial eradication, especially in cases involving biofilm-forming and resistant species. This systematic review synthesizes current evidence on the molecular basis [...] Read more.
Endodontic infections are characterized by complex polymicrobial communities residing within the intricate root canal system. Traditional chemomechanical methods frequently fail to achieve complete microbial eradication, especially in cases involving biofilm-forming and resistant species. This systematic review synthesizes current evidence on the molecular basis and antimicrobial efficacy of the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser in root canal disinfection, particularly against polymicrobial infections. A comprehensive literature search was conducted in the PubMed, Embase, Scopus, and Cochrane databases in accordance with PRISMA 2020 guidelines. Experimental and preclinical studies evaluating the bactericidal properties of Nd:YAG laser therapy were included. The Nd:YAG laser demonstrated significant reductions in total microbial load through photothermal effects, including denaturation of proteins, disruption of cell membranes, and degradation of mixed-species biofilms. Although complete sterilization was not consistently achieved, its ability to penetrate dentinal tubules and target microbial consortia offers substantial adjunctive value. Standardization of laser parameters and further clinical studies are needed to validate these findings and establish Nd:YAG laser use in routine endodontic disinfection protocols. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 1902 KB  
Article
Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media
by Nazia Tabassum, Fazlurrahman Khan, Geum-Jae Jeong, Do Kyung Oh and Young-Mog Kim
Antibiotics 2025, 14(2), 115; https://doi.org/10.3390/antibiotics14020115 - 22 Jan 2025
Viewed by 2186
Abstract
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the [...] Read more.
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the microbial accumulation of bacterial and fungal pathogens species. To combat this issue, naturally derived molecules have been reported to overcome the hurdle of antimicrobial resistance against the application of conventional antibiotics and antifungals. Methods: The present study aimed to employ the lichen-derived molecules, usnic acid (UA), to retard the development of biofilms of bacterial and fungal pathogens on the surface of titanium kept in the human artificial saliva (HAS) working as a growth-supporting, host-mimicking media. Results: The minimum inhibitory concentration of UA in HAS towards Candida albicans was >512 µg/mL, whereas against Staphylococcus aureus and Streptococcus mutans, it was determined to be 512 µg/mL. Whereas, in the standard growth media, the MIC value of UA towards S. mutans and S. aureus were 8 and 16 µg/mL; however, against C. albicans, it was 512 µg/mL. UA synergistically enhanced the efficacy of the antibiotics toward bacterial pathogens and the efficacy of antifungals against C. albicans. The antibiofilm results depict the fact that in the HAS, UA significantly reduced both mono-species of S. mutans, S. aureus, and C. albicans and mixed-species biofilm of C. albicans with S. mutans and S. aureus on the surface of the titanium. Conclusions: The present study showed that UA is a promising natural drug that can control oral polymicrobial disease as a result of the application of dental implants. Full article
Show Figures

Figure 1

14 pages, 3605 KB  
Review
Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions
by Anne Debourgogne, Lorra Monpierre, Khadeeja Adam Sy, Isabel Valsecchi, Jean-Winoc Decousser and Françoise Botterel
J. Fungi 2023, 9(9), 900; https://doi.org/10.3390/jof9090900 - 1 Sep 2023
Cited by 4 | Viewed by 2944
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these [...] Read more.
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations. Full article
(This article belongs to the Special Issue Fungal Biofilms, 2nd Edition)
Show Figures

Figure 1

16 pages, 3245 KB  
Article
A Re-Purposing Strategy: Sub-Lethal Concentrations of an Eicosanoid Derived from the Omega-3-Polyunsaturated Fatty Acid Resolvin D1 Affect Dual Species Biofilms
by Angela Maione, Annalisa Buonanno, Marilena Galdiero, Elisabetta de Alteriis, Francesco Petrillo, Michele Reibaldi, Marco Guida and Emilia Galdiero
Int. J. Mol. Sci. 2023, 24(16), 12876; https://doi.org/10.3390/ijms241612876 - 17 Aug 2023
Cited by 5 | Viewed by 1708
Abstract
The fungal species Candida parapsilosis and the bacterial species Staphylococcus aureus may be responsible for hospital-acquired infections in patients undergoing invasive medical interventions or surgical procedures and often coinfect critically ill patients in complicating polymicrobial biofilms. The efficacy of the re-purposing therapy has [...] Read more.
The fungal species Candida parapsilosis and the bacterial species Staphylococcus aureus may be responsible for hospital-acquired infections in patients undergoing invasive medical interventions or surgical procedures and often coinfect critically ill patients in complicating polymicrobial biofilms. The efficacy of the re-purposing therapy has recently been reported as an alternative to be used. PUFAs (polyunsaturated fatty acids) may be used alone or in combination with currently available traditional antimicrobials to prevent and manage various infections overcoming antimicrobial resistance. The objectives of the study were to evaluate the effects of Resolvin D1 (RvD1) as an antimicrobial on S. aureus and C. parapsilosis, as well as the activity against the mixed biofilm of the same two species. Microdilution assays and time–kill growth curves revealed bacterial and fungal inhibition at minimum concentration values between 5 and 10 μg mL−1. In single-species structures, an inhibition of 55% and 42% was reported for S. aureus and C. parapsilosis, respectively. Moreover, RvD1 demonstrated an eradication capacity of 60% and 80% for single- and mixed-species biofilms, respectively. In association with the inhibition activity, a downregulation of genes involved in biofilm formation as well as ROS accumulation was observed. Eradication capability was confirmed also on mature mixed biofilm grown on silicone platelets as shown by scanning electron microscopy (SEM). In conclusion, RvD1 was efficient against mono and polymicrobial biofilms in vitro, being a promising alternative for the treatment of mixed bacterial/fungal infections. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 5482 KB  
Article
Inhibition of Mixed Biofilms of Candida albicans and Staphylococcus aureus by β-Caryophyllene-Gold Nanoparticles
by Fazlurrahman Khan, Nazia Tabassum, Geum-Jae Jeong, Won-Kyo Jung and Young-Mog Kim
Antibiotics 2023, 12(4), 726; https://doi.org/10.3390/antibiotics12040726 - 7 Apr 2023
Cited by 27 | Viewed by 4552
Abstract
Polymicrobial biofilms, consisting of fungal and bacterial pathogens, often contribute to the failure of antimicrobial treatment. The growing resistance of pathogenic polymicrobial biofilms to antibiotics has led to the development of alternative strategies to combat polymicrobial diseases. To this end, nanoparticles synthesized using [...] Read more.
Polymicrobial biofilms, consisting of fungal and bacterial pathogens, often contribute to the failure of antimicrobial treatment. The growing resistance of pathogenic polymicrobial biofilms to antibiotics has led to the development of alternative strategies to combat polymicrobial diseases. To this end, nanoparticles synthesized using natural molecules have received significant attention for disease treatment. Here, gold nanoparticles (AuNPs) were synthesized using β-caryophyllene, a bioactive compound isolated from various plant species. The shape, size, and zeta potential of the synthesized β-c-AuNPs were found to be non-spherical, 17.6 ± 1.2 nm, and -31.76 ± 0.73 mV, respectively. A mixed biofilm of Candida albicans and Staphylococcus aureus was used to test the efficacy of the synthesized β-c-AuNPs. The results revealed a concentration-dependent inhibition of the initial stages of formation of single-species as well as mixed biofilms. Furthermore, β-c-AuNPs also eliminated mature biofilms. Therefore, using β-c-AuNPs to inhibit biofilm and eradicate bacterial-fungal mixed biofilms represents a promising therapeutic approach for controlling polymicrobial infections. Full article
Show Figures

Figure 1

19 pages, 6463 KB  
Article
Limosilactobacillus fermentum KAU0021 Abrogates Mono- and Polymicrobial Biofilms Formed by Candida albicans and Staphylococcus aureus
by Irfan A. Rather, Mohmmad Younus Wani, Majid Rasool Kamli, Jamal S. M. Sabir, Khalid Rehman Hakeem, Ahmad Firoz, Yong Ha Park and Yan Yan Hor
Pharmaceutics 2023, 15(4), 1079; https://doi.org/10.3390/pharmaceutics15041079 - 27 Mar 2023
Cited by 7 | Viewed by 2983
Abstract
Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated [...] Read more.
Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated infections. In the present study, we investigated the antimicrobial potential of Lactobacillus metabolite extracts (LMEs) purified from cell-free supernatant of four Lactobacillus strains (KAU007, KAU0010, KAU0021, and Pro-65). Furthermore, LME obtained from the strain KAU0021 (LMEKAU0021), being the most effective, was analyzed for its anti-biofilm property against mono- and polymicrobial biofilms formed by C. albicans and S. aureus. The impact of LMEKAU0021 on membrane integrity in single and mixed culture conditions was also evaluated using propidium iodide. The MIC values recorded for LMEKAU0021 was 406 µg/mL, 203 µg/mL, and 406 µg/mL against planktonic cells of C. albicans SC5314, S. aureus and polymicrobial culture, respectively. The LMEKAU0021 at sub-MIC values potentially abrogates both biofilm formation as well as 24 h mature mono- and polymicrobial biofilms. These results were further validated using different microscopy and viability assays. For insight mechanism, LMEKAU0021 displayed a strong impact on cell membrane integrity of both pathogens in single and mixed conditions. A hemolytic assay using horse blood cells at different concentrations of LMEKAU0021 confirmed the safety of this extract. The results from this study correlate the antimicrobial and anti-biofilm properties of lactobacilli against bacterial and fungal pathogens in different conditions. Further in vitro and in vivo studies determining these effects will support the aim of discovering an alternative strategy for combating serious polymicrobial infections caused by C. albicans and S. aureus. Full article
Show Figures

Figure 1

12 pages, 2218 KB  
Article
Antimicrobial Activity and Cytotoxicity of Nonsteroidal Anti-Inflammatory Drugs against Endodontic Biofilms
by Carmen María Ferrer-Luque, Carmen Solana, Beatriz Aguado and Matilde Ruiz-Linares
Antibiotics 2023, 12(3), 450; https://doi.org/10.3390/antibiotics12030450 - 23 Feb 2023
Cited by 7 | Viewed by 2819
Abstract
Persistent infections have become a challenge in dentistry because of growing antibiotic resistance. Nonsteroidal anti-inflammatory drugs (NSAIDs) appear to be a therapeutic alternative to control biofilm infection. The objective of this work is to evaluate the antimicrobial activity and cytotoxicity of sodium diclofenac [...] Read more.
Persistent infections have become a challenge in dentistry because of growing antibiotic resistance. Nonsteroidal anti-inflammatory drugs (NSAIDs) appear to be a therapeutic alternative to control biofilm infection. The objective of this work is to evaluate the antimicrobial activity and cytotoxicity of sodium diclofenac (DCS), ibuprofen (IBP) and ibuprofen arginine (IBP-arginine) solutions against endodontic polymicrobial biofilms. Sterile radicular dentin blocks of 4 mm × 4 mm × 0.7 mm were used as substrate to grow biofilm. The dentin blocks were submerged into solutions for 5 min. The antimicrobial activity was evaluated by means of the adenosine triphosphate (ATP) assay and confocal laser scanning microscopy (CLSM). Fibroblasts 3T3-L1 (ECACC 86052701) were used to test the cytotoxicity of irrigating solutions. The antibiofilm effects determined by the ATP assay showed that 4% IBP-arginine solution exerted the highest antibiofilm activity, followed by 4% DCS and 4% IBP, with statistical differences among groups (p < 0.001). As for CLSM, 4% DCS and 4% IBP-arginine solutions gave the lowest viable cell percentages, without significant differences between them. Cytotoxicity results at 1/10 dilution were similar for all solutions. At 1/100 dilution, a 4% DCS solution obtained the lowest cell viability for both time periods assayed, 1 h and 24 h. The IBP-arginine group showed the highest cell viability at 24 h. In this preliminary study, in terms of antibiofilm activity and cytotoxicity, a mixed 4% IBP-arginine solution gave the most promising results. NSAID solutions could be recommendable drugs for endodontic disinfection procedures. Full article
(This article belongs to the Special Issue Biofilm Formation and Control)
Show Figures

Figure 1

16 pages, 4352 KB  
Article
Inhibition of Polymicrobial Biofilms of Candida albicansStaphylococcus aureus/Streptococcus mutans by Fucoidan–Gold Nanoparticles
by Nazia Tabassum, Fazlurrahman Khan, Min-Gyun Kang, Du-Min Jo, Kyung-Jin Cho and Young-Mog Kim
Mar. Drugs 2023, 21(2), 123; https://doi.org/10.3390/md21020123 - 13 Feb 2023
Cited by 32 | Viewed by 4192
Abstract
The polymicrobial proliferation and development of complex biofilm morphologies by bacterial and fungal pathogens in the host are some of the key factors contributing to the failure of antimicrobial treatments. The polymicrobial interaction of Candida albicans and some bacterial species has been extensively [...] Read more.
The polymicrobial proliferation and development of complex biofilm morphologies by bacterial and fungal pathogens in the host are some of the key factors contributing to the failure of antimicrobial treatments. The polymicrobial interaction of Candida albicans and some bacterial species has been extensively studied in both in vitro and in vivo model systems. Alternative strategies for disrupting polymicrobial interaction and biofilm formation are constantly needed. Among several alternative strategies, the use of nanoparticles synthesized using a natural product in the treatment of microbial infection has been considered a promising approach. The current study aimed to synthesize gold nanoparticles (AuNPs) using a natural product, fucoidan, and to test their efficacy against mono and duo combinations of fungal (Candida albicans) and bacterial (Staphylococcus aureus/Streptococcus mutans) biofilms. Several methods were used to characterize and study Fu–AuNPs, including UV-vis absorption spectroscopy, FTIR, FE-TEM, EDS, DLS, zeta potential, and XRD. The concentration-dependent inhibition of early-stage biofilms and the eradication of mature biofilms of single species of C. albicans, S. aureus, and S. mutans have been observed. Early biofilms of a dual-species combination of C. albicans and S. aureus/S. mutans were also suppressed at an increasing concentration of Fu–AuNPs. Furthermore, Fu–AuNPs significantly eradicated the established mature biofilm of mixed species. The treatment method proposed in this study, which involves the use of marine-bioinspired nanoparticles, is a promising and biocompatible agent for preventing the growth of polymicrobial biofilms of bacterial and fungal pathogens. Full article
Show Figures

Figure 1

16 pages, 2185 KB  
Article
Differential Susceptibility of Mixed Polymicrobial Biofilms Involving Ocular Coccoid Bacteria (Staphylococcus aureus and S. epidermidis) and a Filamentous Fungus (Fusarium solani) on Ex Vivo Human Corneas
by Sisinthy Shivaji, Banka Nagapriya and Konduri Ranjith
Microorganisms 2023, 11(2), 413; https://doi.org/10.3390/microorganisms11020413 - 6 Feb 2023
Cited by 7 | Viewed by 2772
Abstract
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are [...] Read more.
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are predominant in nature. Despite the predominance of polymicrobial biofilms, and more so mixed polymicrobial biofilms, they are rarely studied. The objective of the current study is to evaluate the potential of ocular bacteria and a filamentous fungus to form monomicrobial and mixed polymicrobial biofilms on synthetic and natural substrates and to monitor their response to antibiotics. In this sense, we demonstrated that the ocular pathogens Staphylococcus aureus, S. epidermidis, and Fusarium solani form monomicrobial and mixed polymicrobial biofilms both on tissue culture polystyrene plates and on ex vivo human corneas from cadavers using confocal microscopy and scanning electron microscopy. Additionally, the mixed polymicrobial biofilms involving the above ocular bacteria and a filamentous fungus were less susceptible to different antibacterials and antifungals in relation to the corresponding control planktonic cells. Further, the MICs to the screened antibacterials and antifungals in polymicrobial biofilms involving a bacterium or a fungus was either increased, decreased, or unchanged compared to the corresponding individual bacterial or fungal biofilm. The results would be useful to the ophthalmologist to plan effective treatment regimens for the eye since these are common pathogens of the eye causing keratitis, endophthalmitis, conjunctivitis, etc. Full article
(This article belongs to the Special Issue Biofilm-Related Infections in Healthcare)
Show Figures

Figure 1

13 pages, 2767 KB  
Article
VT-1161—A Tetrazole for Management of Mono- and Dual-Species Biofilms
by Angela Maione, Aldo Mileo, Stefano Pugliese, Antonietta Siciliano, Luigi Cirillo, Federica Carraturo, Elisabetta de Alteriis, Maria De Falco, Marco Guida and Emilia Galdiero
Microorganisms 2023, 11(2), 237; https://doi.org/10.3390/microorganisms11020237 - 17 Jan 2023
Cited by 7 | Viewed by 2402
Abstract
VT-1161 is a novel tetrazole antifungal agent with high specificity for fungal CYP51 (compared to human CYP enzymes) which has been proven to have fewer adverse effects and drug–drug interaction profiles due to fewer off-target inhibitors. In this study, we evaluated the anti-biofilm [...] Read more.
VT-1161 is a novel tetrazole antifungal agent with high specificity for fungal CYP51 (compared to human CYP enzymes) which has been proven to have fewer adverse effects and drug–drug interaction profiles due to fewer off-target inhibitors. In this study, we evaluated the anti-biofilm potential of VT-1161 against mono- and dual-species biofilms of Candida albicans, Klebsiella pneumoniae and Staphylococcus aureus. VT-1161 inhibited planktonic growth of all three strains, with an MIC value of 2 µg mL−1 for C. albicans and 0.5 µg mL−1 for K. pneumoniae and S. aureus, and killed 99.9% of the microbial populations, indicating a cytocidal action. Additionally, VT-1161 showed an excellent anti-biofilm action, since it inhibited mono-microbial biofilms by 80% at 0.5 µg mL−1, and dual-species biofilms of C. albicans/K. pneumoniae and C. albicans/S. aureus by 90% at the same concentration. Additionally, the eradication of mature biofilms after 24 h of VT-1161 exposure was excellent, reaching 90% at 2 μg mL−1 for both mono- and dual-species biofilms. In such mixed biofilms, the use of VT-1161 was revealed to be an alternative treatment because it was able to reduce the number of cells of each species during both inhibition and eradication. Since long-term therapy is necessary for most fungal biofilm infections due to their recurrence and obstinacy, VT-1161 showed low cytotoxicity against normal human cell lines and also against the invertebrate model Caenorhabditis elegans. Considering the excellent anti-biofilm potential and its GRAS (generally recognized as safe) status, VT-1161 may find use in the prevention or therapeutic treatment of mono- or poly-microbial biofilms. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Biofilm Formation)
Show Figures

Figure 1

31 pages, 2122 KB  
Review
Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies
by V T Anju, Siddhardha Busi, Madangchanok Imchen, Ranjith Kumavath, Mahima S. Mohan, Simi Asma Salim, Pattnaik Subhaswaraj and Madhu Dyavaiah
Antibiotics 2022, 11(12), 1731; https://doi.org/10.3390/antibiotics11121731 - 1 Dec 2022
Cited by 96 | Viewed by 10430
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by [...] Read more.
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed. Full article
(This article belongs to the Special Issue Novel Antimicrobial Agents to Inhibit Microbial Conglomerates)
Show Figures

Figure 1

14 pages, 2462 KB  
Article
Polymicrobial Biofilm Organization of Staphylococcus aureus and Pseudomonas aeruginosa in a Chronic Wound Environment
by Cassandra Pouget, Catherine Dunyach-Remy, Chloé Magnan, Alix Pantel, Albert Sotto and Jean-Philippe Lavigne
Int. J. Mol. Sci. 2022, 23(18), 10761; https://doi.org/10.3390/ijms231810761 - 15 Sep 2022
Cited by 31 | Viewed by 4056
Abstract
Biofilm on the skin surface of chronic wounds is an important step that involves difficulties in wound healing. The polymicrobial nature inside this pathogenic biofilm is key to understanding the chronicity of the lesion. Few in vitro models have been developed to study [...] Read more.
Biofilm on the skin surface of chronic wounds is an important step that involves difficulties in wound healing. The polymicrobial nature inside this pathogenic biofilm is key to understanding the chronicity of the lesion. Few in vitro models have been developed to study bacterial interactions inside this chronic wound. We evaluated the biofilm formation and the evolution of bacteria released from this biofilm on the two main bacteria isolated in this condition, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimics the chronic wound environment. We observed that all species constituted a faster biofilm in the CWM compared to a traditional culture medium (p < 0.01). The percentages of biofilm formation were significantly higher in the mixed biofilm compared to those determined for the bacterial species alone (p < 0.01). Biofilm organization was a non-random structure where S. aureus aggregates were located close to the wound surface, whereas P. aeruginosa was located deeper in the wound bed. Planktonic biofilm-detached bacteria showed decreased growth, overexpression of genes encoding biofilm formation, and an increase in the mature biofilm biomass formed. Our data confirmed the impact of the chronic wound environment on biofilm formation and on bacterial lifecycle inside the biofilm. Full article
(This article belongs to the Special Issue Current and New Knowledge of Biofilm Formation by Staphylococci)
Show Figures

Figure 1

15 pages, 3129 KB  
Article
Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae
by Angela Maione, Alessandra La Pietra, Elisabetta de Alteriis, Aldo Mileo, Maria De Falco, Marco Guida and Emilia Galdiero
Microorganisms 2022, 10(9), 1773; https://doi.org/10.3390/microorganisms10091773 - 2 Sep 2022
Cited by 30 | Viewed by 3339
Abstract
The increased incidence of mixed infections requires that the scientific community develop novel antimicrobial molecules. Essential oils and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities and are attracting more and more attention. Therefore, the [...] Read more.
The increased incidence of mixed infections requires that the scientific community develop novel antimicrobial molecules. Essential oils and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities and are attracting more and more attention. Therefore, the aim of this study was to evaluate myrtenol (MYR), one of the constituents commonly found in some essential oils, for its potential to inhibit biofilms alone and in combination with antimicrobial drugs against Candida auris/Klebsiella pneumoniae single and mixed biofilms. The antimicrobial activity of MYR was evaluated by determining bactericidal/fungicidal concentrations (MIC), and biofilm formation at sub-MICs was analyzed in a 96-well microtiter plate by crystal violet, XTT reduction assay, and CFU counts. The synergistic interaction between MYR and antimicrobial drugs was evaluated by the checkerboard method. The study found that MYR exhibited antimicrobial activity at high concentrations while showing efficient antibiofilm activity against single and dual biofilms. To understand the underlying mechanism by which MYR promotes single/mixed-species biofilm inhibition, we observed a significant downregulation in the expression of mrkA, FKS1, ERG11, and ALS5 genes, which are associated with bacterial motility, adhesion, and biofilm formation as well as increased ROS production, which can play an important role in the inhibition of biofilm formation. In addition, the checkerboard microdilution assay showed that MYR was strongly synergistic with both caspofungin (CAS) and meropenem (MEM) in inhibiting the growth of Candida auris/Klebsiella pneumoniae-mixed biofilms. Furthermore, the tested concentrations showed an absence of toxicity for both mammalian cells in the in vitro and in vivo Galleria mellonella models. Thus, MYR could be considered as a potential agent for the management of polymicrobial biofilms. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Biofilm Formation)
Show Figures

Figure 1

Back to TopTop