Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = mirror washing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5025 KiB  
Article
Automated Quality Control of Cleaning Processes in Automotive Components Using Blob Analysis
by Simone Mari, Giovanni Bucci, Fabrizio Ciancetta, Edoardo Fiorucci and Andrea Fioravanti
Sensors 2025, 25(9), 2710; https://doi.org/10.3390/s25092710 - 24 Apr 2025
Viewed by 508
Abstract
This study presents an automated computer vision system for assessing the cleanliness of plastic mirror caps used in the automotive industry after a washing process. These components are highly visible and require optimal surface conditions prior to painting, making the detection of residual [...] Read more.
This study presents an automated computer vision system for assessing the cleanliness of plastic mirror caps used in the automotive industry after a washing process. These components are highly visible and require optimal surface conditions prior to painting, making the detection of residual contaminants critical for quality assurance. The system acquires high-resolution monochrome images under various lighting configurations, including natural light and infrared (IR) at 850 nm and 940 nm, with different angles of incidence. Four blob detection algorithms—adaptive thresholding, Laplacian of Gaussian (LoG), Difference of Gaussians (DoG), and Determinant of Hessian (DoH)—were implemented and evaluated based on their ability to detect surface impurities. Performance was assessed by comparing the total detected blob area before and after the cleaning process, providing a proxy for both sensitivity and false positive rate. Among the tested methods, adaptive thresholding under 30° natural light produced the best results, with a statistically significant z-score of +2.05 in the pre-wash phase and reduced false detections in post-wash conditions. The LoG and DoG methods were more prone to spurious detections, while DoH demonstrated intermediate performance but struggled with reflective surfaces. The proposed approach offers a cost-effective and scalable solution for real-time quality control in industrial environments, with the potential to improve process reliability and reduce waste due to surface defects. Full article
(This article belongs to the Special Issue Intelligent Industrial Process Control Systems: 2nd Edition)
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction
by Yixiao Wu, Chenlin Fu, Jiaxin Xing, Lin Yang, Chong Zhao and Kun Yan
Polymers 2024, 16(23), 3244; https://doi.org/10.3390/polym16233244 - 22 Nov 2024
Cited by 1 | Viewed by 1128
Abstract
Herein, this study reports the development of a multifunctional conductive antibacterial cotton fabric through the utilization of the natural polyphenol-mediated silver mirror reaction. The experimental results demonstrate that polyphenols can effectively facilitate the deposition of silver nanoparticles (AgNPs), resulting in a uniform and [...] Read more.
Herein, this study reports the development of a multifunctional conductive antibacterial cotton fabric through the utilization of the natural polyphenol-mediated silver mirror reaction. The experimental results demonstrate that polyphenols can effectively facilitate the deposition of silver nanoparticles (AgNPs), resulting in a uniform and durable hybrid nanocoating on the cotton fabric. The effects of polyphenol’s molecular weights on the coating structures and stabilities have been revealed via two distinct approaches: washing resistance and electrochemical testing systems. It has been concluded that lower-molecular-weight phenols induce a compact and dense coating structure, whereas polyphenols such as tannic acid exhibit relatively high stability, achieving an excellent conductivity of 0.2 S/cm and a good washing resistance of 67% over five cycles. The underlying mechanism has been further confirmed by the cyclic voltammetry measurements, suggesting that polyphenols play a significant role in stabilizing AgNPs and preventing their dissolution. Furthermore, the Ag-doped polyphenol-coated fabrics exhibit notable antibacterial properties. By coupling natural polyphenols with typical silver mirror reactions, this study not only offers a sustainable alternative to synthetic chemicals but also presents a promising method to endow cotton textiles with the dual properties of conductivity and antibacterial activity. Full article
(This article belongs to the Special Issue Biomaterials Modification, Characterization and Applications)
Show Figures

Figure 1

11 pages, 3076 KiB  
Article
Self-Cleaning Solar Mirror Coatings: From the Laboratory Scale to Prototype Field Tests
by Anna Castaldo, Emilia Gambale, Giuseppe Vitiello and Giuseppe Cara
Appl. Sci. 2024, 14(15), 6669; https://doi.org/10.3390/app14156669 - 31 Jul 2024
Cited by 2 | Viewed by 1118
Abstract
In this study, a low-cost, scalable and robust process is proposed as an innovative method for coating solar mirrors with a self-cleaning, transparent in the full solar range and versatile material based on auxetic aluminum nitrides, previously obtained at the laboratory scale. This [...] Read more.
In this study, a low-cost, scalable and robust process is proposed as an innovative method for coating solar mirrors with a self-cleaning, transparent in the full solar range and versatile material based on auxetic aluminum nitrides, previously obtained at the laboratory scale. This work presents the scaling-up of the fabrication process from the laboratory to prototypal scale and the preliminary results of outdoor self-cleaning solar mirror field tests in the demonstrative concentrating solar power (CSP) plant ENEASHIP located in Casaccia (Rome) ENEA Research Center. Prototypes with a size of 50 × 40 cm have shown stability in external conditions: no coating degradation occurred during the test campaign. Their washing restores the initial reflectance affected by soiling and the self-cleaning performance allows for the utilization of a reduced quantity of water for cleaning operations with respect to the uncoated glass of back surface mirrors. A similar self-cleaning AlN coating could be utilized on other solar components affected by soiling, such as the glass envelopes in heat-collecting elements, PV panels and other parts where a self-cleaning performance combined with an optical one is required. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

16 pages, 3716 KiB  
Article
Influence of Spatio-Temporal Couplings on Focused Optical Vortices
by Anda-Maria Talposi, Vicentiu Iancu and Daniel Ursescu
Photonics 2022, 9(6), 389; https://doi.org/10.3390/photonics9060389 - 30 May 2022
Cited by 9 | Viewed by 2899
Abstract
Ultra-intense laser pulses with helical phases are of interest in laser-driven charged particle acceleration and related experiments with extreme light. However, such optical vortices can be affected by the presence of residual spatial-temporal couplings. Their field distributions after propagating in free-space and in [...] Read more.
Ultra-intense laser pulses with helical phases are of interest in laser-driven charged particle acceleration and related experiments with extreme light. However, such optical vortices can be affected by the presence of residual spatial-temporal couplings. Their field distributions after propagating in free-space and in the focal plane of an ideal focusing mirror were assessed through numerical modeling, based on the Gaussian decomposition method for a 25 fs pulse with a Supergaussian spatial profile. The wash-out of the central hole in the doughnut-shaped profile in the focal plane corresponds to the rotation of the phase discontinuity. Full article
Show Figures

Figure 1

13 pages, 2946 KiB  
Article
Aluminium Nitride Doping for Solar Mirrors Self-Cleaning Coatings
by Anna Castaldo, Emilia Gambale and Giuseppe Vitiello
Energies 2021, 14(20), 6668; https://doi.org/10.3390/en14206668 - 14 Oct 2021
Cited by 5 | Viewed by 2456
Abstract
Soiling severely reduces solar mirror performance, requiring dispendious water consumption for cleaning operations and causing an increase in the levelized cost of energy (LCOE). An emerging technology for facing this problem consists of developing transparent self-cleaning coatings, able to be washed with a [...] Read more.
Soiling severely reduces solar mirror performance, requiring dispendious water consumption for cleaning operations and causing an increase in the levelized cost of energy (LCOE). An emerging technology for facing this problem consists of developing transparent self-cleaning coatings, able to be washed with a small amount of water by virtue of the modulation of surficial wetting properties. Nevertheless, the beneficial effects of coatings decrease in the first year, and coated mirrors show even higher soiling than non-coated ones. Moreover, it is important that coating production processes are economically convenient, consistent with the intended reduction of overall costs. The aim of this work is the research and development of a cheap and scalable solution, compatible with mirror fabrication steps and, in such a sense, economically advantageous. It involves the substitution of the alumina last layer of solar mirrors with more hydrophobic, potentially auxetic aluminum compounds, such as nitrides. In particular, 2D inorganic aluminum nitride thin films doped with metals (such as aluminum and silver) and non-metals have been fabricated by means of reactive sputtering deposition and characterized for the purpose of studying their self-cleaning behavior, finding a trade-off between wetting properties, optical clarity, and stability. Full article
(This article belongs to the Special Issue Solar Thermodynamic Materials Overview)
Show Figures

Figure 1

25 pages, 70890 KiB  
Review
A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants
by Sahar Bouaddi, Aránzazu Fernández-García, Chris Sansom, Jon Ander Sarasua, Fabian Wolfertstetter, Hicham Bouzekri, Florian Sutter and Itiziar Azpitarte
Sustainability 2018, 10(11), 3937; https://doi.org/10.3390/su10113937 - 29 Oct 2018
Cited by 47 | Viewed by 11082
Abstract
The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff [...] Read more.
The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff should opt for sustainable cleaning methods that are safe and environmentally friendly. To restore high reflectance, the cleaning vehicles of CSP plants must adapt to the constraints of each technology and to the layout of reflectors in the solar field. Water based methods are currently the most commonly used in CSP plants but they are not sustainable due to water scarcity and high soiling rates. The recovery and reuse of washing water can compensate for these methods and make them a more reasonable option for mediterranean and desert environments. Dry methods, on the other hand, are gaining more attraction as they are more suitable for desert regions. Some of these methods rely on ultrasonic wave or vibration for detaching the dust bonding from the reflectors surface, while other methods, known as preventive methods, focus on reducing the soiling by modifying the reflectors surface and incorporating self cleaning features using special coatings. Since the CSP plants operators aim to achieve the highest profit by minimizing the cost of cleaning while maintaining a high reflectance, optimizing the cleaning parameters and strategies is of great interest. This work presents the conventional water-based methods that are currently used in CSP plants in addition to sustainable alternative methods for dust removal and soiling prevention. Also, the cleaning effectiveness, the environmental impacts and the economic aspects of each technology are discussed. Full article
(This article belongs to the Special Issue Sustainability in Mediterranean Climate)
Show Figures

Figure 1

6 pages, 108 KiB  
Article
Heavy Metal Uptake, Translocation, and Bioaccumulation Studies of Triticum aestivum Cultivated in Contaminated Dredged Materials
by Ketia L. Shumaker and Gregorio Begonia
Int. J. Environ. Res. Public Health 2005, 2(2), 293-298; https://doi.org/10.3390/ijerph2005020013 - 14 Aug 2005
Cited by 18 | Viewed by 13970
Abstract
Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat [...] Read more.
Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue concentrations were observed, differences in Cd tissue concentrations were noted. A maximum concentration of 26 mg Cd kg-1 DW was detected in T. aestivum shoots. Although Cd tissue concentrations of T. aestivum plants in this study were below the Cd plant hyperaccumulation criterion of >100 mg kg-1 Cd found in other studies, this plant species however may still have beneficial uses for phytoremediation studies. T. aestivum plants may serve as an indicator plant for environmental assessment and management, in which the concentration of heavy metals (e.g. Cd) mirrors the concentration in the substrate without dying due to phytotoxicity at low metal concentrations. Full article
Show Figures

Back to TopTop