Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = minor seizures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4098 KiB  
Article
Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained Classification
by Peter Akor, Godwin Enemali, Usman Muhammad, Rajiv Ranjan Singh and Hadi Larijani
Information 2025, 16(7), 532; https://doi.org/10.3390/info16070532 - 24 Jun 2025
Viewed by 517
Abstract
Epileptic seizure detection and classification from EEG recordings faces significant challenges due to extreme class imbalance. Analysis of the Temple University Hospital Seizure (TUSZ) dataset reveals imbalance ratios of 150:1 between common and rare seizure types, with high temporal heterogeneity (seizure durations of [...] Read more.
Epileptic seizure detection and classification from EEG recordings faces significant challenges due to extreme class imbalance. Analysis of the Temple University Hospital Seizure (TUSZ) dataset reveals imbalance ratios of 150:1 between common and rare seizure types, with high temporal heterogeneity (seizure durations of 1–1638 s). We propose a cascaded deep learning architecture with two specialized CNNs: a binary detector followed by a multi-class classifier. This approach decomposes the classification problem, reducing the maximum imbalance from 150:1 to manageable levels (9:1 binary, 5:1 type). The architecture implements a high-confidence filtering mechanism (threshold = 0.9), creating a 99.5% pure dataset for type classification, dynamic class-weighted optimization proportional to inverse class frequencies, and information flow refinement through progressive stages. Loss dynamics analysis reveals that our weighting scheme strategically redistributes optimization attention, reducing variance by 90.7% for majority classes while increasing variance for minority classes, ensuring all seizure types receive proportional learning signals regardless of representation. The binary classifier achieves 99.64% specificity and 98.23% sensitivity (ROC-AUC = 0.995). The type classifier demonstrates >99% accuracy across seven seizure categories with perfect (100%) classification for three seizure types despite minimal representation. Cross-dataset validation on the University of Bonn dataset confirms robust generalization (96.0% accuracy) for binary seizure detection. This framework effectively addresses multi-level imbalance in neurophysiological signal classification with hierarchical class structures. Full article
Show Figures

Graphical abstract

18 pages, 9688 KiB  
Article
The Role of a Conserved Arg-Asp Pair in the Structure and Function of Tetanus Neurotoxin
by Elizabeth A. Wilson, Ashtyn N. Bevans and Michael R. Baldwin
Toxins 2025, 17(6), 273; https://doi.org/10.3390/toxins17060273 - 30 May 2025
Viewed by 1263
Abstract
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This [...] Read more.
Tetanus, a severe and life-threatening illness caused by Clostridium tetani, produces symptoms such as muscle spasms, muscle stiffness and seizures caused by the production of tetanus neurotoxin (TeNT). TeNT causes spastic paralysis through the inhibition of neurotransmission in spinal inhibitory interneurons. This is achieved, in part, through pH-triggered membrane insertion of the translocation (HCT) domain, which delivers the catalytic light-chain (LC) domain to the cytosol. While the function of HCT is well defined, the mechanism by which it accomplishes this task is largely unknown. Based on the crystal structure of tetanus neurotoxin, we identified potential polar interactions between arginine 711, tryptophan 715 and aspartate 821 that appear to be evolutionarily conserved across the clostridial neurotoxin family. We show that the disruption of the Asp-Arg pair in a beltless HCT variant (bHCT) results in changes in thermal stability without significant alterations to the overall secondary structure. ANS (1-anilino-8-napthalene sulfonate) binding studies, in conjunction with liposome permeabilization assays, demonstrate that mutations at R711 or D821 trigger interactions with the membrane at higher pH values compared to wildtype bHCT. Interestingly, we show that the introduction of the D821N mutation into LHNT (LC-HCT only), but not the holotoxin, resulted in the increased cleavage of VAMP 2 in cortical neurons relative to the wildtype protein. This suggests that, as observed for botulinum toxin A, the receptor-binding domain is not necessary for LC translocation but rather helps determine the pH threshold of membrane insertion. The mutation of W715 did not result in detectable changes in the activity of either bHCT or the holotoxin, suggesting that it plays only a minor role in stabilizing the structure of the toxin. We conclude that the protonation of D821 at low pH disrupts interactions with R711 and W715, helping to drive the conformational refolding of HCT needed for membrane insertion and the subsequent translocation of the LC. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

18 pages, 2586 KiB  
Systematic Review
Brain Metastases from Primary Cardiac Tumors: A Systematic Review of Diagnosis, Treatment, and Prognosis
by Salvatore Marrone, Ignazio Alessio Gueli, Roberta Lo Coco, Lorenzo Scalia, Salvatore Rizzica, Giuliana Baiamonte, Roberta Costanzo, Antonino Salvatore Rubino, Gianluca Ferini, Giuseppe Emmanuele Umana and Gianluca Scalia
Cancers 2025, 17(10), 1621; https://doi.org/10.3390/cancers17101621 - 10 May 2025
Viewed by 725
Abstract
Background: Primary cardiac tumors (PCTs) are rare entities, with only a minority being malignant and capable of distant dissemination. Among the rarest and most challenging metastatic events are brain metastases originating from cardiac tumors. Due to the heart’s direct access to systemic [...] Read more.
Background: Primary cardiac tumors (PCTs) are rare entities, with only a minority being malignant and capable of distant dissemination. Among the rarest and most challenging metastatic events are brain metastases originating from cardiac tumors. Due to the heart’s direct access to systemic circulation, even benign tumors such as atrial myxomas may cause cerebral embolic phenomena. Understanding the distinct biological behavior, diagnostic pathways, therapeutic strategies, and prognostic implications of these cases remains limited by the scarcity of the available literature. Methods: A systematic review was conducted following PRISMA guidelines. PubMed, Scopus, Embase, and other major databases were systematically searched using specific MeSH terms and keywords related to cardiac tumors and brain metastases. After applying strict inclusion and exclusion criteria, nineteen studies were included, comprising sixteen single-patient case reports and three multi-patient series. Extracted data included tumor histology, cardiac and brain imaging findings, neurological presentation, treatment approaches, and patient outcomes. Results: A total of 320 patients were analyzed. Atrial myxomas represented the predominant benign tumors causing embolic cerebral events, while angiosarcomas and other cardiac sarcomas were responsible for true hematogenous brain metastases. Brain involvement was frequently hemorrhagic and manifested with seizures, focal deficits, or signs of intracranial hypertension. Cardiac echocardiography and cardiac magnetic resonance imaging (CMR) were essential for tumor detection, while brain MRI, including SWI and DWI sequences, and CT scanning were critical for cerebral lesion characterization. Treatment strategies varied according to tumor type and included surgery, radiotherapy, and systemic therapies. Malignant cardiac tumors correlated with a poor prognosis, with median survival post-CNS involvement ranging from 12 to 14 months. Conclusions: Brain metastases from PCTs, though rare, represent a distinct and serious clinical phenomenon. Benign tumors like myxomas mainly cause embolic cerebral events, whereas malignant tumors, particularly sarcomas, lead to true metastatic brain lesions. Recognizing this biological distinction is crucial for diagnosis, prognostication, and therapeutic planning. An integrated multidisciplinary approach combining advanced cardiac and neuroimaging techniques is vital for early detection and appropriate management. Despite multimodal treatment, survival remains limited, underscoring the urgent need for novel targeted therapies and improved surveillance strategies. Full article
(This article belongs to the Special Issue Cancer Cells Fostered Microenvironment in Metastasis)
Show Figures

Figure 1

27 pages, 3764 KiB  
Article
Effective Epileptic Seizure Detection with Hybrid Feature Selection and SMOTE-Based Data Balancing Using SVM Classifier
by Hany F. Atlam, Gbenga Ebenezer Aderibigbe and Muhammad Shahroz Nadeem
Appl. Sci. 2025, 15(9), 4690; https://doi.org/10.3390/app15094690 - 23 Apr 2025
Cited by 2 | Viewed by 1179
Abstract
Epileptic seizures, a leading cause of global morbidity and mortality, pose significant challenges in timely diagnosis and management. Epilepsy, a chronic neurological disorder characterized by recurrent and unpredictable seizures, affects over 70 million people worldwide, according to the World Health Organization (WHO). Despite [...] Read more.
Epileptic seizures, a leading cause of global morbidity and mortality, pose significant challenges in timely diagnosis and management. Epilepsy, a chronic neurological disorder characterized by recurrent and unpredictable seizures, affects over 70 million people worldwide, according to the World Health Organization (WHO). Despite significant advances in medical science, accurate and timely diagnosis of epileptic seizures remains a challenge, with misdiagnosis rates reported to be as high as 30%. The consequences of misdiagnosis or delayed diagnosis can be severe, leading to increased morbidity, mortality, and reduced quality of life for patients. Therefore, this paper presents a novel approach to enhancing epileptic seizure detection through the integration of Synthetic Minority Over-Sampling Technique (SMOTE) for data balancing and a Hybrid Feature Selection Technique—Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT). The proposed model aims to improve the accuracy and reliability of seizure detection systems by addressing data imbalance and extracting discriminative features from electroencephalograms (EEG) signals. Experimental results demonstrate substantial performance gains, with the Support Vector Machine (SVM) classifier achieving 97.30% accuracy, 99.62% Area Under the Curve (AUC), and 93.08% F1 score, which outperform the results of the existing studies from the literature. The results highlight the effectiveness of the proposed model in advancing seizure detection systems, highlighting the potential to improve diagnostic capabilities and patient outcomes. Full article
(This article belongs to the Special Issue Smart Healthcare: Techniques, Applications and Prospects)
Show Figures

Figure 1

18 pages, 4320 KiB  
Article
Long-Term Fish Oil Supplementation Attenuates Spike Wave Discharges in the Amygdala of Adult Rats with Early-Life Febrile Seizures
by Leopoldo Eduardo Flores-Mancilla, Marisela Hernández-González, Miguel Ángel Guevara-Pérez, Herlinda Bonilla-Jaime, Noemí Gaytán-Pacheco, Claudia Araceli Reyes-Estrada and Fermín Paul Pacheco-Moisés
Brain Sci. 2025, 15(4), 395; https://doi.org/10.3390/brainsci15040395 - 14 Apr 2025
Viewed by 633
Abstract
Background and Objectives: Febrile seizures (FS) are neuronal disturbances frequently associated with abnormal electroencephalographic activity (EEG) as spike-wave discharges (SWDs). Fish oil (FO) has high amounts of omega-3 fatty acids (θ-3), and its effects on FS alterations are poorly understood. The aim of [...] Read more.
Background and Objectives: Febrile seizures (FS) are neuronal disturbances frequently associated with abnormal electroencephalographic activity (EEG) as spike-wave discharges (SWDs). Fish oil (FO) has high amounts of omega-3 fatty acids (θ-3), and its effects on FS alterations are poorly understood. The aim of this work was to evaluate the effect of long-term FO supplementation on the EEG of the amygdala of adult male rats with early-life FS. Materials and Methods: Progenitor female Wistar rats, from puberty to gestation and delivery, were fed daily with a commercial diet supplemented with either fish oil (FO), palm oil (PO), or deionized water (CTRL). After parturition, male pups were exposed for 30 min to hyperthermia (HP) and then returned to their dams. After weaning, pups were fed a commercial diet and the respective treatments up to 155 days of age when electrodes were implanted in the amygdala. Results: During early life HP, the PO and CTRL groups reached maximal core temperature (CT) in comparison with the FO group. Furthermore, the FO group only has fewer myoclonus and long latency to adopt an uncontrolled posture. At an adult age, the FO group with early-life FS scored shorter periods of SWDs in amygdala EEG but without seizures and presented minor values of absolute power than the PO and CTRL groups. Conclusions: In adult rats, the long-term supplementation of FO minimizes the deleterious behavioral effects caused by early-life FS and decreases the occurrence and amplitude of SWDs in the EEG of the amygdala. Full article
Show Figures

Figure 1

18 pages, 4019 KiB  
Article
Seizure Detection in Medical IoT: Hybrid CNN-LSTM-GRU Model with Data Balancing and XAI Integration
by Hanaa Torkey, Sonia Hashish, Samia Souissi, Ezz El-Din Hemdan and Amged Sayed
Algorithms 2025, 18(2), 77; https://doi.org/10.3390/a18020077 - 1 Feb 2025
Cited by 7 | Viewed by 2341
Abstract
The brain acts as the body’s central command, overseeing diverse functions including thought, memory, speech, movement, and the regulation of various organs. When healthy, the brain functions seamlessly and automatically; however, disruptions can lead to serious conditions such as Alzheimer’s Disease, Brain Cancer, [...] Read more.
The brain acts as the body’s central command, overseeing diverse functions including thought, memory, speech, movement, and the regulation of various organs. When healthy, the brain functions seamlessly and automatically; however, disruptions can lead to serious conditions such as Alzheimer’s Disease, Brain Cancer, Stroke, and Epilepsy. Epilepsy, a neurological disorder marked by recurrent seizures, results from irregular electrical activity in the brain. These seizures, which can strain both patients and neurologists, are characterized by symptoms like the loss of awareness, unusual behavior, and confusion. This study presents an efficient EEG-based epileptic seizure detection framework utilizing a hybrid Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models approach to support automated and accurate diagnosis. Handling imbalanced EEG data, which can otherwise bias model outcomes and reduce predictive accuracy, is a key focus. Experimental results indicate that the proposed framework generally outperforms other Deep Learning and Machine Learning techniques with the highest accuracy at 99.13%. Likewise, an Explainable Artificial Intelligence (XAI) called SHAP (SHapley Additive exPlanations) is utilized to analyze the results and to improve the interpretability of the models from medical decision-making. This framework aligns with the objectives of the Medical Internet of Things (MIoT), advancing smart medical applications and services for effective epileptic seizure detection. Full article
Show Figures

Figure 1

17 pages, 25948 KiB  
Article
The Evolution of the Tensile Properties of MoS2-Coated Titanium Alloy Bolts Under the Synergistic Damage of NaCl Corrosion and Preloading
by Derong Feng, Maoyang Xie, Weilin Yu, Chao Li, Raolong Guo, Yunpeng Hu, Quanyuan Ming and Qiang Wan
Materials 2025, 18(1), 123; https://doi.org/10.3390/ma18010123 - 31 Dec 2024
Cited by 1 | Viewed by 979
Abstract
MoS2 coating is a newly developed method to prevent bolt corrosion and the seizure of bolts used in equipment in sea areas. It is of great significance to investigate the evolution of the tensile properties and intact coatings for the maintenance of [...] Read more.
MoS2 coating is a newly developed method to prevent bolt corrosion and the seizure of bolts used in equipment in sea areas. It is of great significance to investigate the evolution of the tensile properties and intact coatings for the maintenance of coated bolts. To evaluate the tensile properties of MoS2-coated titanium alloy bolts, titanium alloy bolts coated with MoS2 (TC4+MoS2) and bolts treated with a composite treatment of anodizing oxidation and MoS2 coating (TC4+AO+MoS2) were corroded in salt spray tests for 4300 h. The MoS2 coating significantly enhanced the bolts’ corrosion resistance, demonstrating exceptional protective performance by only experiencing minor peeling due to oxidation-induced cracking of the coating during the extensive 4300 h salt spray test. The tensile strengths of the TC4+MoS2 and TC4+AO+MoS2 bolts both decreased as compared with the original bolts. The bolts pretreated with anodic oxidation revealed lighter coating peeling and maintained a higher tensile strength after corrosion. Therefore, it can be concluded that the coatings provided excellent corrosion resistance, leading to a minor impact on the bolts’ tensile strength and fracture behavior under the synergistic damage of sea water corrosion and preloading. Full article
(This article belongs to the Special Issue Corrosion Behavior and Mechanical Properties of Metallic Materials)
Show Figures

Figure 1

6 pages, 1371 KiB  
Case Report
Salmonella Brain Abscess in Sickle Cell Disease Patient: Case Report
by Felipe M. R. Monteiro, Ryan P. O’Boyle, Ruby R. Taylor, Danny L. John, Guilherme S. Piedade and Joacir G. Cordeiro
Reports 2024, 7(4), 107; https://doi.org/10.3390/reports7040107 - 27 Nov 2024
Viewed by 1339
Abstract
Background and Clinical Significance: A brain abscess, defined as a localized intracranial infection that evolves into a purulent collection encased by a vascularized capsule, has higher prevalence among immunocompromised populations. Patients with sickle cell disease (SCD) are particularly vulnerable to bacterial infections [...] Read more.
Background and Clinical Significance: A brain abscess, defined as a localized intracranial infection that evolves into a purulent collection encased by a vascularized capsule, has higher prevalence among immunocompromised populations. Patients with sickle cell disease (SCD) are particularly vulnerable to bacterial infections due to their compromised immune systems, increasing their susceptibility to pathogens like Salmonella. While Salmonella is typically associated with gastroenteritis, osteomyelitis, and septicemia, its involvement in brain abscesses is exceedingly rare. There are few documented cases of Salmonella brain abscesses in the general population, and among patients with SCD, only one such case has been reported to date. In this report, we describe the second known case of a brain abscess caused by Salmonella infection in a patient with sickle cell disease, contributing to the limited literature on this rare and life-threatening condition. Case Presentation: A 32-year-old African American woman with sickle cell disease presented to the ER after a generalized seizure, reporting two weeks of worsening headaches, fevers, and left upper extremity weakness. Imaging revealed a right frontoparietal brain abscess, which was surgically drained, and cultures identified Salmonella enterica. After antibiotic treatment and a 23-day hospital stay, she was discharged. Four months later, she returned with another seizure during a sickle cell crisis, but follow-up MRI showed only minor scarring, and she was discharged on anticonvulsant therapy. Conclusions: This case emphasizes that Salmonella infections, though typically linked to osteomyelitis and sepsis, can also cause brain abscesses in immunocompromised patients like those with sickle cell disease. It highlights the need to consider infections alongside vascular causes in acute neurological cases and underscores the value of a multidisciplinary approach in managing such complex conditions. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

8 pages, 461 KiB  
Case Report
Accidental Detection of Cocaine in Urine in Pediatric Patients: Case Series and Literature Review
by Martina Focardi, Ilenia Bianchi, Marta Romanelli, Valentina Gori, Laura Nanni, Fabio Vaiano and Stefania Losi
Children 2024, 11(11), 1301; https://doi.org/10.3390/children11111301 - 28 Oct 2024
Viewed by 1757
Abstract
Infantile occult exposure to cocaine in domestic environments represents a complex clinical and medico-legal problem, which can be associated with abuse and neglect and with potential short- and long-term health risks for children. The authors present a retrospective study on 764 children under [...] Read more.
Infantile occult exposure to cocaine in domestic environments represents a complex clinical and medico-legal problem, which can be associated with abuse and neglect and with potential short- and long-term health risks for children. The authors present a retrospective study on 764 children under 14 years old who accessed the Emergency Department of IRCCS Meyer from 2016 to 2023 and were included in the GAIA (Child and Adolescent Abuse Group) protocol for suspected maltreatment and abuse, and for which a urine toxicology analysis was performed. The aim is to discuss the medico-legal implications and highlight the need for a thorough evaluation and management of such situations. Urine screening tests for substances of abuse (e.g., cocaine, opiates, etc.) were performed with an EMIT® Siemens VIVA-E drug testing system (Siemens, Newark DE) in 124 cases for which the child’s clinical condition raised suspicion of intoxication, or the family context indicated distress or substance abuse dependency. The screening results revealed the presence of cocaine and its main metabolite, benzoylecgonine, in the urine of 11 children. In one case, a single girl was brought to the Emergency Department by staff from the facility where she and her mother were staying. In most of the cases, children were brought to the Emergency Department by their parents who accessed the Emergency Department due to various clinical manifestations (drowsiness, agitation, seizures, hypotonia, diarrhea, vomiting, etc.), except for one case of eye trauma suspected to be caused by abuse or neglect by one of the parents. Three of the children did not have signs or symptoms attributable to substance exposure, whilst eight of the cases presented some of the symptoms associated with occult infant exposure to cocaine, such as neurological manifestations, seizures, gastrointestinal symptoms, and respiratory depression. The probable mode of intake was mostly through breastfeeding and continuous environmental exposure due to domestic contamination or inhalation of “crack”. In the case of a 12-hour-old infant, there was probable prenatal in utero exposure. All the children were hospitalized, some for medical reasons and others solely as a precautionary measure for proper care. In all cases, a report was made to the Prosecutors as required by the Italian Penal Code, as well as to the Court of Minor. The study highlighted the importance of a multidisciplinary approach involving pediatricians, social workers, and forensics, as well as close collaboration with the relevant authorities, as the Gaia service at IRCCS Meyer offers. The occasional detection of cocaine in cases that showed no suspicion of intoxication led to a modification of the procedure and the development of a standardized protocol at IRCCS Meyer both in terms of prevention and in the detection and interception of hidden cases, in order to intervene early and initiate the necessary care pathways (secondary prevention). This protocol includes routine toxicological urine testing in all suspected or confirmed cases of child abuse, not just in those where symptoms might suggest a suspicion of intoxication. Full article
Show Figures

Figure 1

9 pages, 218 KiB  
Article
Emamectin Poisoning in Thailand: Clinical Characteristics and Outcomes
by Satariya Trakulsrichai, Perapatn Sittiyuno, Phantakan Tansuwannarat and Achara Tongpoo
Toxics 2024, 12(9), 668; https://doi.org/10.3390/toxics12090668 - 13 Sep 2024
Cited by 2 | Viewed by 1494
Abstract
Emamectin benzoate (Emamectin) is a broad-spectrum insecticide. Current data regarding emamectin poisoning in humans are very limited. We performed a 10-year retrospective cross-sectional study (2011–2020) using data from the Ramathibodi Poison Center database to examine the clinical characteristics and outcomes in patients exposed [...] Read more.
Emamectin benzoate (Emamectin) is a broad-spectrum insecticide. Current data regarding emamectin poisoning in humans are very limited. We performed a 10-year retrospective cross-sectional study (2011–2020) using data from the Ramathibodi Poison Center database to examine the clinical characteristics and outcomes in patients exposed to emamectin. Eighty-eight patients were included. Most of the patients were male (72.7%) and exposure was frequently oral (86.4%) and intentional (67.0%).Their mean age was 42.8 years. The clinical presentations included gastrointestinal tract symptoms (62.5%), neurological symptoms (27.3%) including seizures, respiratory symptoms (6.8%), and local effects (12.5%). At presentation, the majority of patients exhibited normal consciousness and vital signs. Eleven patients showed no obvious clinical effects. Initially, 15 patients had metabolic acidosis and 11 had hypokalemia. Overall, 46 and 52 patients were administered gastric lavage and activated charcoal, respectively. Most patients (78.4%) were hospitalized, with a median hospital stay of 40 h, and generally received supportive treatment. Eight patients were intubated for ventilator support and one received inotropic drugs. Most patients (90.9%) showed no or minor outcomes; however, two patients died. The presence of Glasgow Coma Scale (GCS) <15 differed significantly (p < 0.001) between patients with no or minor outcomes (n = 80) and those with moderate or fatal outcomes (n = 8). In conclusion, emamectin poisoning mainly caused no or minor clinical effects. A low GCS at presentation was associated with worse outcomes. Therefore, patients who present with low GCS should be closely observed, monitored, and properly managed during hospitalization. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
7 pages, 705 KiB  
Article
Evaluating the Efficacy of Vagus Nerve Stimulation across ‘Minor’ and ‘Major’ Seizure Types: A Retrospective Analysis of Clinical Outcomes in Pharmacoresistant Epilepsy
by Flavius Iuliu Urian, Corneliu Toader, Razvan-Adrian Covache Busuioc, Luca-Andrei Glavan, Antonio Daniel Corlatescu, Gabriel Iacob and Alexandru Vlad Ciurea
J. Clin. Med. 2024, 13(14), 4114; https://doi.org/10.3390/jcm13144114 - 14 Jul 2024
Cited by 1 | Viewed by 1715
Abstract
Background: Evaluating the differential impact of vagus nerve stimulation (VNS) therapy across various seizure types, our study explores its efficacy specifically in patients with categorized minor and major seizures. Methods: We conducted a retrospective cohort study involving 76 patients with pharmacoresistant epilepsy treated [...] Read more.
Background: Evaluating the differential impact of vagus nerve stimulation (VNS) therapy across various seizure types, our study explores its efficacy specifically in patients with categorized minor and major seizures. Methods: We conducted a retrospective cohort study involving 76 patients with pharmacoresistant epilepsy treated at the University Emergency Hospital of Bucharest between 2021 and 2024. Seizures were classified as ‘minor’ (including focal-aware and non-motor/absence seizures) and ‘major’ (including focal to bilateral tonic-clonic and generalized motor seizures), based on modified International League Against Epilepsy (ILAE) criteria. This classification allowed us to assess the response to VNS therapy, defined by a 50% or greater reduction in seizure frequency at the 12-month follow-up. Results: Our findings reveal that major seizures respond more favorably to VNS therapy, significantly reducing both frequency and intensity. In contrast, minor seizures showed a less pronounced response in frequency reduction but noted improvements in neurocognitive functions, suggesting a nuanced benefit of VNS in these cases. Conclusion: The study underscores the importance of seizure type in determining the efficacy of VNS therapy, advocating for personalized treatment approaches based on seizure classification. This approach could potentially enhance clinical outcomes by tailoring VNS settings to specific seizure types, improving overall management strategies in pharmacoresistant epilepsy. Full article
Show Figures

Figure 1

12 pages, 1572 KiB  
Article
Novel ML-Based Algorithm for Detecting Seizures from Single-Channel EEG
by Yazan M. Dweiri and Taqwa K. Al-Omary
NeuroSci 2024, 5(1), 59-70; https://doi.org/10.3390/neurosci5010004 - 29 Feb 2024
Cited by 3 | Viewed by 2256
Abstract
There is a need for seizure classification based on EEG signals that can be implemented with a portable device for in-home continuous minoring of epilepsy. In this study, we developed a novel machine learning algorithm for seizure detection suitable for wearable systems. Extreme [...] Read more.
There is a need for seizure classification based on EEG signals that can be implemented with a portable device for in-home continuous minoring of epilepsy. In this study, we developed a novel machine learning algorithm for seizure detection suitable for wearable systems. Extreme gradient boosting (XGBoost) was implemented to classify seizures from single-channel EEG obtained from an open-source CHB-MIT database. The results of classifying 1-s EEG segments are shown to be sufficient to obtain the information needed for seizure detection and achieve a high seizure sensitivity of up to 89% with low computational cost. This algorithm can be impeded in single-channel EEG systems that use in- or around-the-ear electrodes for continuous seizure monitoring at home. Full article
Show Figures

Figure 1

16 pages, 4629 KiB  
Article
Increased Dentate Gyrus Excitability in the Intrahippocampal Kainic Acid Mouse Model for Temporal Lobe Epilepsy
by Marijke Vergaelen, Simona Manzella, Kristl Vonck, Erine Craey, Jeroen Spanoghe, Mathieu Sprengers, Evelien Carrette, Wytse Jan Wadman, Jean Delbeke, Paul Boon, Lars Emil Larsen and Robrecht Raedt
Int. J. Mol. Sci. 2024, 25(1), 660; https://doi.org/10.3390/ijms25010660 - 4 Jan 2024
Cited by 4 | Viewed by 3863
Abstract
The intrahippocampal kainic acid (IHKA) mouse model is an extensively used in vivo model to investigate the pathophysiology of mesial temporal lobe epilepsy (mTLE) and to develop novel therapies for drug-resistant epilepsy. It is characterized by profound hippocampal sclerosis and spontaneously occurring seizures [...] Read more.
The intrahippocampal kainic acid (IHKA) mouse model is an extensively used in vivo model to investigate the pathophysiology of mesial temporal lobe epilepsy (mTLE) and to develop novel therapies for drug-resistant epilepsy. It is characterized by profound hippocampal sclerosis and spontaneously occurring seizures with a major role for the injected damaged hippocampus, but little is known about the excitability of specific subregions. The purpose of this study was to electrophysiologically characterize the excitability of hippocampal subregions in the chronic phase of the induced epilepsy in the IHKA mouse model. We recorded field postsynaptic potentials (fPSPs) after electrical stimulation in the CA1 region and in the dentate gyrus (DG) of hippocampal slices of IHKA and healthy mice using a multielectrode array (MEA). In the DG, a significantly steeper fPSP slope was found, reflecting higher synaptic strength. Population spikes were more prevalent with a larger spatial distribution in the IHKA group, reflecting a higher degree of granule cell output. Only minor differences were found in the CA1 region. These results point to increased neuronal excitability in the DG but not in the CA1 region of the hippocampus of IHKA mice. This method, in which the excitability of hippocampal slices from IHKA mice is investigated using a MEA, can now be further explored as a potential new model to screen for new interventions that can restore DG function and potentially lead to novel therapies for mTLE. Full article
(This article belongs to the Special Issue Focus on Hippocampus Biology: From Neurophysiology to Dysfunctions)
Show Figures

Figure 1

18 pages, 3588 KiB  
Article
AsHC 360 Exposure Influence on Epileptiform Discharges in Hippocampus of Infantile Male Rats In Vitro
by Lei Dong, Ling Zhao, Lei Tian, Wenjun Zhao, Chan Xiong and Yu Zheng
Int. J. Mol. Sci. 2023, 24(23), 16806; https://doi.org/10.3390/ijms242316806 - 27 Nov 2023
Cited by 1 | Viewed by 1512
Abstract
Arsenic-containing hydrocarbons (AsHCs) are typical arsenolipids found in various marine organisms. They can penetrate the blood–brain barrier, specifically affecting synaptic plasticity and the learning and memory ability of hippocampal neurons. Temporal lobe epilepsy often occurs in the hippocampus. Thus, the possible influence of [...] Read more.
Arsenic-containing hydrocarbons (AsHCs) are typical arsenolipids found in various marine organisms. They can penetrate the blood–brain barrier, specifically affecting synaptic plasticity and the learning and memory ability of hippocampal neurons. Temporal lobe epilepsy often occurs in the hippocampus. Thus, the possible influence of AsHCs exposure to temporal lobe epilepsy garnered attention. The present study investigated the effects of epileptiform discharges (EDs) signals introduced by low-magnesium ACSF in the hippocampus of infantile male rats in vitro, using electrophysiological techniques with multi-electrode arrays under AsHC 360 exposure. In our study of the effects of AsHC 360 on EDs signals, we found that inter-ictal discharges (IIDs) were not significantly impacted. When AsHC 360 was removed, any minor effects observed were reversed. However, when we examined the impact of AsHC 360 on ictal discharges (IDs), distinct patterns emerged based on the concentration levels. For low-concentration groups (5, 20, 60 μg As L−1), both the frequency and duration effects on IDs returned to normal post-elimination of AsHC 360. However, this recovery was not evident for concentrations of 100 μg As L−1 or higher. IDs were only observed in EDs signals during exposures to AsHC 360 concentrations up to 60 μg As L−1. In these conditions, ID frequencies significantly enhanced with the increased of AsHC 360 concentration. At high concentrations of AsHC 360 (≥100 μg As L−1), the transition from IIDs or pre-ictal discharges (PIDs) to IDs was notably inhibited. Additional study on co-exposure of AsHC 360 (100 μg As L−1) and agonist (10 nM (S)-(-)-Bay-K-8644) indicated that the regulation of EDs signals under AsHC 360 exposure could be due to directly interference with the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) expression which influences the binding of excitatory glutamate neurotransmitter to AMPAR. The results suggest that EDs activities in the hippocampus of infantile Sprague Dawley rats are concentration-dependent on AsHC 360 exposure. Thus, it provides a basis for the seafood intake with AsHCs for epileptic patients and those with potential seizures. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity 2.0)
Show Figures

Graphical abstract

14 pages, 2474 KiB  
Article
Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia
by Snehal Shah, Sara M. Sarasua, Luigi Boccuto, Brian C. Dean and Liangjiang Wang
Genes 2023, 14(11), 1998; https://doi.org/10.3390/genes14111998 - 26 Oct 2023
Cited by 5 | Viewed by 2301
Abstract
Phelan–McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), [...] Read more.
Phelan–McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS. Full article
Show Figures

Figure 1

Back to TopTop