Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = microtubule-associated protein (MAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1052 KiB  
Article
Molecular and Genetic Analysis of the Increased Number of Genes for Trypanosoma cruzi Microtubule Associated Proteins in the Class Kinetoplastida
by Martin A. Winkler and Alfred A. Pan
Pathogens 2025, 14(5), 476; https://doi.org/10.3390/pathogens14050476 - 14 May 2025
Viewed by 622
Abstract
Trypanosoma cruzi GenBank® M21331 encodes for Antigen 36 (Ag 36), which is a tandemly repeated T. cruzi antigen. GenBank M21331 has a gene sequence similarity to human immune genes IFN-α, IFN-β, and IFN-γ, as well as to human TRIM genes. A BLAST-p [...] Read more.
Trypanosoma cruzi GenBank® M21331 encodes for Antigen 36 (Ag 36), which is a tandemly repeated T. cruzi antigen. GenBank M21331 has a gene sequence similarity to human immune genes IFN-α, IFN-β, and IFN-γ, as well as to human TRIM genes. A BLAST-p search revealed that T. cruzi GenBank M21331 had seven gene sequences homologous to microtubule-associated protein (MAP) genes with a 100% amino acid sequence identity. There are 36 genes in the T. cruzi genome with >94% identity to GenBank M21331, and these genes encode proteins ranging in size from 38 to 2011 amino acids in length, the largest containing 20, 25, and 30 repeats of the Ag 36 thirty-eight-amino-acid-sequence motif. The purpose of this study was to perform a genetic and molecular comparative analysis of T. cruzi GenBank M21331 to determine if this gene sequence is unique to the T. cruzi clade, present in the T. brucei clade, and/or exists in other trypanosomatids. There are seven homologous genes to GenBank M21331 in T. cruzi, but only one homolog found of this gene in T. brucei. The MAP genes in T. cruzi appear to have expanded at least eleven-fold in number compared to similar MAP genes in T. brucei. The DNA sequences and functions of these MAP genes in their respective species and clades will be discussed and are a fascinating area for further scientific study. Full article
(This article belongs to the Special Issue Genetics and Molecular Evolution of Parasitic Protozoa)
Show Figures

Graphical abstract

21 pages, 14030 KiB  
Article
Impact of Type 1 Diabetes on Testicular Microtubule Dynamics, Sperm Physiology, and Male Reproductive Health in Rat
by Alessandra Biasi, Maria Rosaria Ambruosi, Maria Zelinda Romano, Serena Boccella, Sara Falvo, Francesca Guida, Francesco Aniello, Sabatino Maione, Massimo Venditti and Sergio Minucci
Int. J. Mol. Sci. 2025, 26(10), 4579; https://doi.org/10.3390/ijms26104579 - 10 May 2025
Cited by 1 | Viewed by 820
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the [...] Read more.
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the testis and spermatozoa (SPZ). Using a streptozotocin-induced T1D rat model, we examined the expression and localization of key MAPs, including Microtubule Affinity-Regulating Kinase 4 (MARK4), Microtubule-Associated Protein 1A (MAP1A), Dynein Light Chain LC8-Type 1 (DYNLL1), Prolyl Endopeptidase (PREP), and Radial Spoke Head 6 Homolog A (RSPH6A), alongside sperm functional parameters. Our findings showed that T1D significantly impaired the expression and distribution of these proteins, which may affect MTs organization and be associated with cytoskeletal disorganization, and impaired germ cell differentiation. Moreover, T1D rats exhibited reduced sperm count, viability, and motility, accompanied by increased DNA fragmentation and chromatin defects. Elevated levels of 4-hydroxy-2-nonenal (4-HNE), a marker of OS, were detected in SPZ, particularly in the acrosome and flagellum, correlating with mitochondrial dysfunction and ATP depletion. Additionally, decreased intracellular Ca2+ levels, downregulation of Cation Channel of Sperm (CATSPER) and Voltage-Dependent Anion Channel 3 (VDAC3), and altered tubulin acetylation, possibly due to imbalanced Alpha-Tubulin N-Acetyltransferase 1 (ATAT1) and Histone Deacetylase 6 (HDAC6) expression, were also associated with impaired sperm motility. The combined data suggest that T1D-induced OS is linked to disrupted MTs dynamics, which may contribute to testicular dysfunction and reduced sperm quality, potentially affecting male fertility. A better understanding of these associations may support the development of therapeutic strategies to mitigate the reproductive consequences of T1D and improve male fertility outcomes. Full article
Show Figures

Graphical abstract

18 pages, 1883 KiB  
Article
Increased Myocardial MARK4 Expression in Patients with Heart Failure and Sleep-Disordered Breathing
by Bettina Seydel, Philipp Hegner, Anna-Maria Lauerer, Sönke Schildt, Fatma Bayram, Maria Tafelmeier, Dominik Wermers, Leopold Rupprecht, Christof Schmid, Stefan Wagner, Lars Siegfried Maier, Michael Arzt and Simon Lebek
Int. J. Mol. Sci. 2025, 26(8), 3614; https://doi.org/10.3390/ijms26083614 - 11 Apr 2025
Viewed by 640
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, underscoring the urgent need for novel therapeutic targets and strategies. The kinase MARK4 (MAP (microtubule-associated proteins)/microtubule affinity-regulating kinase 4) regulates microtubule-associated proteins pivotal for cell polarity, protein stability, and intracellular signaling. Animal [...] Read more.
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, underscoring the urgent need for novel therapeutic targets and strategies. The kinase MARK4 (MAP (microtubule-associated proteins)/microtubule affinity-regulating kinase 4) regulates microtubule-associated proteins pivotal for cell polarity, protein stability, and intracellular signaling. Animal models of heart failure revealed elevated MARK4 levels, which correlated with impaired cardiac contractility. However, the involvement of MARK4 and its potential as a molecular drug target has not yet been explored in the myocardium of cardiovascular patients. We investigated the MARK4 mRNA expression in human myocardial biopsies of 152 high-risk cardiovascular patients undergoing cardiac surgery. Comprehensive echocardiography as well as testing for sleep-disordered breathing (SDB), a critical comorbidity in heart failure, were assessed preoperatively. We observed a substantial upregulation of myocardial MARK4 expression in patients with impaired cardiac contractility, resulting in an inverse correlation with the left ventricular ejection fraction. Myocardial MARK4 expression also correlated with echocardiographic E/e’, a central parameter of diastolic dysfunction. Mechanistically, our analyses revealed that MARK4 expression increases in SDB and under hypoxic conditions, as evidenced by significant correlations between myocardial MARK4 expression and factors like mean oxygen saturation, time with oxygen saturation below 90%, and the oxygen desaturation index. Multivariable regression analysis revealed that both left ventricular ejection fraction and mean oxygen saturation were independently associated with dysregulated MARK4 levels, even when controlling for important clinical covariables as potential confounders. Taken together, our findings demonstrate that MARK4 expression is highly increased in the myocardium of cardiovascular high-risk patients, suggesting it is a potential molecular target against cardiovascular diseases. Full article
Show Figures

Figure 1

37 pages, 4217 KiB  
Article
A Benzodiazepine-Derived Molecule That Interferes with the Bio-Mechanical Properties of Glioblastoma-Astrocytoma Cells Altering Their Proliferation and Migration
by Gregorio Ragazzini, Andrea Mescola, Riccardo Tassinari, Alessia Gallerani, Chiara Zannini, Domenico Di Rosa, Claudia Cavallini, Martina Marcuzzi, Valentina Taglioli, Beatrice Bighi, Roberta Ettari, Vincenzo Zappavigna, Carlo Ventura, Andrea Alessandrini and Lorenzo Corsi
Int. J. Mol. Sci. 2025, 26(6), 2767; https://doi.org/10.3390/ijms26062767 - 19 Mar 2025
Cited by 2 | Viewed by 893
Abstract
Glioblastoma multiforme (grade IV glioma) is characterized by a high invasive potential, making surgical intervention extremely challenging and patient survival very limited. Current pharmacological approaches show, at best, slight improvements in the therapy against this type of tumor. Microtubules are often the target [...] Read more.
Glioblastoma multiforme (grade IV glioma) is characterized by a high invasive potential, making surgical intervention extremely challenging and patient survival very limited. Current pharmacological approaches show, at best, slight improvements in the therapy against this type of tumor. Microtubules are often the target of antitumoral drugs, and specific drugs affecting their dynamics by acting on microtubule-associated proteins (MAPs) without producing their depolymerization could affect both glioma cell migration/invasion and cell proliferation. Here, we analyzed on a cellular model of glioblastoma multiforme, the effect of a molecule (1-(4-amino-3,5-dimethylphenyl)-3,5-dihydro-7,8-ethylenedioxy-4h2,3-benzodiazepin-4-one, hereafter named 1g) which was shown to act as a cytostatic drug in other cell types by affecting microtubule dynamics. We found that the molecule acts also as a migration suppressor by inducing a loss of cell polarity. We characterized the mechanics of U87MG cell aggregates exposed to 1g by different biophysical techniques. We considered both 3D aggregates and 2D cell cultures, testing substrates of different stiffness. We established that this molecule produces a decrease of cell spheroid contractility and it impairs 3D cell invasion. At the same time, in the case of isolated cells, 1g selectively produces an almost instantaneous loss of cell polarity blocking migration and it also produces a disorganization of the mitotic spindle when cells reach mitosis, leading to frequent mitotic slippage events followed by cell death. We can state that the studied molecule produces similar effects to other molecules that are known to affect the dynamics of microtubules, but probably indirectly via microtubule-associated proteins (MAPs) and following different biochemical pathways. Consistently, we report evidence that, regarding its effect on cell morphology, this molecule shows a specificity for some cell types such as glioma cells. Interestingly, being a molecule derived from a benzodiazepine, the 1g chemical structure could allow this molecule to easily cross the blood–brain barrier. Thanks to its chemical/physical properties, the studied molecule could be a promising new drug for the specific treatment of GBM. Full article
(This article belongs to the Special Issue Biomechanics and Molecular Research on Glioblastoma)
Show Figures

Figure 1

13 pages, 2354 KiB  
Article
ARIH1 Inhibition Promotes Microtubule Stability and Sensitizes Breast Cancer Cells to Microtubule-Stabilizing Agents
by Mohamed Elshaer, Breege V. Howley and Philip H. Howe
Cancers 2025, 17(5), 782; https://doi.org/10.3390/cancers17050782 - 25 Feb 2025
Cited by 1 | Viewed by 894
Abstract
Background: Microtubule dynamics play a pivotal role in cancer progression and response to chemotherapeutics. Identifying regulators of microtubule stability can provide new therapeutic targets and predictive biomarkers for cancer treatment. Methods: We investigated the role of ARIH1, an E3 ubiquitin ligase, in breast [...] Read more.
Background: Microtubule dynamics play a pivotal role in cancer progression and response to chemotherapeutics. Identifying regulators of microtubule stability can provide new therapeutic targets and predictive biomarkers for cancer treatment. Methods: We investigated the role of ARIH1, an E3 ubiquitin ligase, in breast cancer by analyzing clinical datasets to assess its expression levels and prognostic significance. Functional studies were conducted in breast cancer cell lines to evaluate the impact of ARIH1 depletion on microtubule stability, MAP4 regulation, and paclitaxel sensitivity. Results: Clinical dataset analysis revealed that ARIH1 expression is significantly elevated in breast cancer tissues and correlates with poor prognosis and reduced recurrence-free survival. High ARIH1 expression stratifies patients into high-risk groups, underscoring its potential as a prognostic biomarker. Functional studies demonstrated that ARIH1 loss led to upregulation of MAP4, a microtubule-associated protein, resulting in microtubule stabilization via increased tubulin acetylation and enhanced spindle organization. This stabilization sensitized breast cancer cells to paclitaxel treatment, leading to reduced cell viability, impaired colony formation, and increased apoptosis in ARIH1-deficient cells. Conclusions: Our findings identify ARIH1 as a novel regulator of microtubule dynamics in breast cancer. ARIH1 suppression enhances paclitaxel sensitivity, highlighting its potential as both a therapeutic target and a biomarker for predicting treatment response and patient outcomes in breast cancer. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

21 pages, 23279 KiB  
Article
Effects of Microplastic Accumulation on Neuronal Death After Global Cerebral Ischemia
by Dong Yeon Kim, Min Kyu Park, Hyun Wook Yang, Seo Young Woo, Hyun Ho Jung, Dae-Soon Son, Bo Young Choi and Sang Won Suh
Cells 2025, 14(4), 241; https://doi.org/10.3390/cells14040241 - 7 Feb 2025
Cited by 2 | Viewed by 2478
Abstract
Brain ischemia, a condition in which the brain is deprived of blood flow, can lead to a stroke due to blocked or unstable blood vessels. Global cerebral ischemia (GCI), characterized by an interruption in blood flow, deprives the brain of oxygen and nutrients, [...] Read more.
Brain ischemia, a condition in which the brain is deprived of blood flow, can lead to a stroke due to blocked or unstable blood vessels. Global cerebral ischemia (GCI), characterized by an interruption in blood flow, deprives the brain of oxygen and nutrients, producing reactive oxygen species (ROS) that trigger cell death, which kills nerve cells. Microplastics (MPs), tiny environmental pollutants, can enter the human body through contaminated food, water, disposable items, cosmetics, and more. Once in the brain, MPs can increase neuroinflammation by overstimulating inflammatory factors such as microglia. MPs can also damage neurons by scratching myelin and microtubules, slowing signal transduction, causing cognitive impairment, and leading to neuronal death. Furthermore, microtubule damage may result in the release of phosphorylated tau proteins, potentially linked to Alzheimer’s disease. We hypothesized that MPs could exacerbate neuroinflammation and microtubule destruction after GCI, leading to increased neuronal death. To test this hypothesis, we administered MPs (0.5 µm) orally at a dose of 50 mg/kg before and after inducing GCI. Staining techniques such as Fluoro-Jade B (FJB), ionized calcium-binding adaptor molecule 1 (Iba-1), cluster of differentiation 68 (CD68), myelin basic protein (MBP), and microtubule-associated protein 2 (MAP2) were used, along with Western blot analysis for interleukin-6 (IL-6), TNF-α, tau-5, and phospho-tau (S396) to evaluate the effects of MPs on neuronal cell death, neuroinflammation, and microtubule destruction. The results showed that MP accumulation significantly increased neuroinflammation, microtubule disruption, and neuronal cell death in the GCI-MP group compared to the GCI-vehicle group. Therefore, this study suggests that MP accumulation in daily life may contribute to the exacerbation of the disease, potentially leading to severe neuronal cell death after GCI. Full article
(This article belongs to the Special Issue Cell Stress and Intervention in Neurological Disease)
Show Figures

Figure 1

20 pages, 4167 KiB  
Article
Transcriptome Analysis Suggests PKD3 Regulates Proliferative Glucose Metabolism, Calcium Homeostasis and Microtubule Dynamics After MEF Spontaneous Immortalization
by Jocshan Loaiza-Moss, Ursula Braun and Michael Leitges
Int. J. Mol. Sci. 2025, 26(2), 596; https://doi.org/10.3390/ijms26020596 - 12 Jan 2025
Cited by 1 | Viewed by 1240
Abstract
Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse [...] Read more.
Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization. However, the mechanisms by which PKD3 regulates proliferation in immortalized MEFs require further elucidation. Using a previously validated Prkd3-deficient MEF model, we performed a poly-A transcriptomic analysis to identify putative Prkd3-regulated biological processes and downstream targets in MEFs after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were identified and further analyzed by gene ontology (GO) enrichment and protein–protein interaction (PPI) network analyses to identify potential hub genes. Our results suggest that Prkd3 modulates proliferation through the regulation of gene expression associated with glucose metabolism (Tnf, Ucp2, Pgam2, Angptl4), calcium homeostasis and transport (Calcr and P2rx7) and microtubule dynamics (Stmn2 and Map10). These candidate processes and associated genes represent potential mechanisms involved in Prkd3-induced proliferation in spontaneously immortalized cells as well as clinical targets in several cancer types. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 10876 KiB  
Article
Inhibition of IRAP Enhances the Expression of Pro-Cognitive Markers Drebrin and MAP2 in Rat Primary Neuronal Cells
by Frida Stam, Sara Bjurling, Erik Nylander, Esther Olaniran Håkansson, Nicholas Barlow, Johan Gising, Mats Larhed, Luke R. Odell, Alfhild Grönbladh and Mathias Hallberg
Int. J. Mol. Sci. 2024, 25(22), 12016; https://doi.org/10.3390/ijms252212016 - 8 Nov 2024
Cited by 1 | Viewed by 1340
Abstract
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the [...] Read more.
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models. The macrocyclic compound 9 (C9) is a potent synthetic IRAP inhibitor developed from the previously reported inhibitor HA08. In this study, we have examined compound C9 and its effects on cognitive markers drebrin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP) in primary hippocampal and cortical cultures. Cells from Sprague Dawley rats were cultured for 14 days before treatment with C9 for 4 consecutive days. The cells were analysed for protein expression of drebrin, MAP2, GFAP, glucose transporter type 4 (GLUT4), vesicular glutamate transporter 1 (vGluT1), and synapsin I using immunocytochemistry. The gene expression of related proteins was determined using qPCR, and viability assays were performed to evaluate toxicity. The results showed that protein expression of drebrin and MAP2 was increased, and the corresponding mRNA levels were decreased after treatment with C9 in the hippocampal cultures. The ratio of MAP2-positive neurons and GFAP-positive astrocytes was altered and there were no toxic effects observed. In conclusion, the IRAP inhibitor compound C9 enhances the expression of the pro-cognitive markers drebrin and MAP2, which further confirms IRAP as a relevant pharmaceutical target and C9 as a promising candidate for further investigation. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 9734 KiB  
Article
The Potential Role of PeMAP65-18 in Secondary Cell Wall Formation in Moso Bamboo
by Yuhan Jia, Shuxin Chen, Mengyun Li, Longfei Ouyang, Jing Xu, Xiaojiao Han, Wenmin Qiu, Zhuchou Lu, Renying Zhuo and Guirong Qiao
Plants 2024, 13(21), 3000; https://doi.org/10.3390/plants13213000 - 27 Oct 2024
Viewed by 1150
Abstract
Microtubule-associated proteins (MAPs) play a pivotal role in the assembly and stabilization of microtubules, which are essential for plant cell growth, development, and morphogenesis. A class of plant-specific MAPs, MAP65, plays largely unexplored roles in moso bamboo (Phyllostachys edulis). This study [...] Read more.
Microtubule-associated proteins (MAPs) play a pivotal role in the assembly and stabilization of microtubules, which are essential for plant cell growth, development, and morphogenesis. A class of plant-specific MAPs, MAP65, plays largely unexplored roles in moso bamboo (Phyllostachys edulis). This study identified 19 PeMAP65 genes in moso bamboo, systematically examining their phylogenetic relationships, conserved motifs, gene structures, collinearity, and cis-acting elements. Analysis of gene expression indicated that PeMAP65s exhibit tissue-specific expression patterns. Functional differentiation was investigated among the members of different PeMAP65 subfamilies according to their expression patterns in different development stages of bamboo shoots. The expression of PeMAP65-18 was positively correlated with the expression of genes involved in secondary cell wall (SCW) biosynthesis. Y1H and Dual-LUC assays demonstrated that the transcription of PeMAP65-18 was upregulated by PeMYB46, a key transcription factor of SCW biosynthesis. The result of subcellular localization showed that PeMAP65-18 was located in cortical microtubules. We speculate that PeMAP65-18 may play a crucial role in the SCW deposition of moso bamboo. This comprehensive analysis of the MAP65 family offers novel insights into the roles of PeMAP65s in moso bamboo, particularly in relation to the formation of SCWs. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding 2025)
Show Figures

Figure 1

20 pages, 4148 KiB  
Article
Genes Related to Motility in an Ionizing Radiation and Estrogen Breast Cancer Model
by Tania Koning and Gloria M. Calaf
Biology 2024, 13(11), 849; https://doi.org/10.3390/biology13110849 - 22 Oct 2024
Viewed by 1917
Abstract
Breast cancer is a major global health concern as it is the primary cause of cancer death for women. Environmental radiation exposure and endogenous factors such as hormones increase breast cancer risk, and its development and spread depend on cell motility and migration. [...] Read more.
Breast cancer is a major global health concern as it is the primary cause of cancer death for women. Environmental radiation exposure and endogenous factors such as hormones increase breast cancer risk, and its development and spread depend on cell motility and migration. The expression of genes associated with cell motility, such as ADAM12, CYR61, FLRT2, SLIT2, VNN1, MYLK, MAP1B, and TUBA1A, was analyzed in an experimental breast cancer model induced by radiation and estrogen. The results showed that TUBA1A, SLIT2, MAP1B, MYLK, and ADAM12 gene expression increased in the irradiated Alpha3 cell line but not in the control or the malignant Tumor2 cell line. Bioinformatic analysis indicated that FLERT2, SLIT2, VNN1, MAP1B, MYLK, and TUBA1A gene expressions were found to be higher in normal tissue than in tumor tissue of breast cancer patients. However, ADAM12 and CYR61 expressions were found to be higher in tumors than in normal tissues, and they had a negative correlation with ESR1 gene expression. Concerning ESR2 gene expression, there was a negative correlation with CYR61, but there was a positive correlation with FLRT2, MYLK, MAP1B, and VNN1. Finally, a decreased survival rate was observed in patients exhibiting high expression levels of TUBA1A and MAP1B. These genes also showed a negative ER status, an important parameter for endocrine therapy. The genes related to motility were affected by ionizing radiation, confirming its role in the initiation process of breast carcinogenesis. In conclusion, the relationship between the patient’s expression of hormone receptors and genes associated with cell motility presents a novel prospect for exploring therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Biological Breast Cancer Research)
Show Figures

Figure 1

19 pages, 2103 KiB  
Article
Plasma Proteomics of Type 2 Diabetes, Hypertension, and Co-Existing Diabetes/Hypertension in Thai Adults
by Puriwat Fakfum, Hataichanok Chuljerm, Wason Parklak, Sittiruk Roytrakul, Narumon Phaonakrop, Peerasak Lerttrakarnnon and Kanokwan Kulprachakarn
Life 2024, 14(10), 1269; https://doi.org/10.3390/life14101269 - 5 Oct 2024
Cited by 1 | Viewed by 1776
Abstract
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 [...] Read more.
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 with T2DM (mean age = 57.38 ± 6.03), 16 with HT (mean age = 66.87 ± 10.09), and 18 with coexisting T2DM/HT (mean age = 58.22 ± 10.65). Proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein–protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.5. We identified six unique proteins in T2DM patients, including translationally controlled 1 (TPT1) and nibrin (NBN), which are associated with the DNA damage response. In HT patients, seven unique proteins were identified, among them long-chain fatty acid-CoA ligase (ASCL), which functions in the stimulation of triacylglycerol and cholesterol synthesis, and NADPH oxidase activator 1 (NOXA1), which is involved in high blood pressure via angiotensin II-induced reactive oxygen species (ROS)-generating systems. In coexisting T2DM/HT patients, six unique proteins were identified, of which two—microtubule-associated protein 1A (MAP1A)—might be involved in dementia via RhoB-p53 and diacylglycerol kinase beta (DGKB), associated with lipid metabolism. This study identified new candidate proteins that are possibly involved in the pathology of these diseases. Full article
(This article belongs to the Special Issue Alterations of the Metabolic Homeostasis in Aging)
Show Figures

Figure 1

11 pages, 4530 KiB  
Article
Investigation of Persistent Photoconductivity of Gallium Nitride Semiconductor and Differentiation of Primary Neural Stem Cells
by Yu Meng, Xiaowei Du, Shang Zhou, Jiangting Li, Rongrong Feng, Huaiwei Zhang, Qianhui Xu, Weidong Zhao, Zheng Liu and Haijian Zhong
Molecules 2024, 29(18), 4439; https://doi.org/10.3390/molecules29184439 - 19 Sep 2024
Viewed by 1764
Abstract
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, [...] Read more.
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, βIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices. Full article
Show Figures

Graphical abstract

14 pages, 2873 KiB  
Article
Chemical Coaxing of Mesenchymal Stromal Cells by Drug Repositioning for Nestin Induction
by Sun-Ung Lim, Dae-Won Lee, Jung-Ho Kim, Young-Ju Kang, In-Yong Kim and Il-Hoan Oh
Int. J. Mol. Sci. 2024, 25(15), 8006; https://doi.org/10.3390/ijms25158006 - 23 Jul 2024
Viewed by 1473
Abstract
Mesenchymal stromal cells (MSCs) display heterogeneity in origin and functional role in tissue homeostasis. Subsets of MSCs derived from the neural crest express nestin and serve as niches in bone marrow, but the possibility of coaxing MSCs into nestin-expresing cells for enhanced supportive [...] Read more.
Mesenchymal stromal cells (MSCs) display heterogeneity in origin and functional role in tissue homeostasis. Subsets of MSCs derived from the neural crest express nestin and serve as niches in bone marrow, but the possibility of coaxing MSCs into nestin-expresing cells for enhanced supportive activity is unclear. In this study, as an approach to the chemical coaxing of MSC functions, we screened libraries of clinically approved chemicals to identify compounds capable of inducing nestin expression in MSCs. Out of 2000 clinical compounds, we chose vorinostat as a candidate to coax the MSCs into neural crest-like fates. When treated with vorinostat, MSCs exhibited a significant increase in the expression of genes involved in the pluripotency and epithelial–mesenchymal transition (EMT), as well as nestin and CD146, the markers for pericytes. In addition, these nestin-induced MSCs exhibited enhanced differentiation towards neuronal cells with the upregulation of neurogenic markers, including SRY-box transcription factor 2 (Sox2), SRY-box transcription factor 10 (Sox10) and microtubule associated protein 2 (Map2) in addition to nestin. Moreover, the coaxed MSCs exhibited enhanced supporting activity for hematopoietic progenitors without supporting leukemia cells. These results demonstrate the feasibility of the drug repositioning of MSCs to induce neural crest-like properties through the chemical coaxing of cell fates. Full article
Show Figures

Figure 1

19 pages, 10538 KiB  
Article
Poxvirus A51R Proteins Negatively Regulate Microtubule-Dependent Transport by Kinesin-1
by Dahee Seo, Yang Yue, Shin Yamazaki, Kristen J. Verhey and Don B. Gammon
Int. J. Mol. Sci. 2024, 25(14), 7825; https://doi.org/10.3390/ijms25147825 - 17 Jul 2024
Cited by 1 | Viewed by 1999
Abstract
Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have [...] Read more.
Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a “kinesin-1 sink” to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 2nd Edition)
Show Figures

Figure 1

16 pages, 7200 KiB  
Article
Small Molecules Temporarily Induce Neuronal Features in Adult Canine Dermal Fibroblasts
by Kiyotaka Arai, Fumiyo Saito, Masashi Miyazaki, Haruto Kushige, Yayoi Izu, Noritaka Maeta and Kazuaki Yamazoe
Int. J. Mol. Sci. 2023, 24(21), 15804; https://doi.org/10.3390/ijms242115804 - 31 Oct 2023
Viewed by 1858
Abstract
Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been [...] Read more.
Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been used as a spontaneous disease model of human central nerve, efficient neuronal reprogramming method of canine cells have not been well established. We aimed to induce neuronal features in adult canine dermal fibroblasts (ACDFs) by SMs and assess the permanency of these changes. ACDFs treated with eight SMs developed a round-shaped cell body with branching processes and expressed neuronal proteins, including βIII-tubulin, microtubule-associated protein 2 (MAP2), and neurofilament-medium. Transcriptome profiling revealed the upregulation of neuron-related genes, such as SNAP25 and GRIA4, and downregulation of fibroblast-related genes, such as COL12A1 and CCN5. Calcium fluorescent imaging demonstrated an increase in intracellular Ca2+ concentration upon stimulation with glutamate and KCl. Although neuronal features were induced similarly in basement membrane extract droplet culture, they diminished after culturing without SMs or in vivo transplantation into an injured spinal cord. In conclusion, SMs temporarily induce neuronal features in ACDFs. However, the analysis of bottlenecks in the neuronal induction is crucial for optimizing the process. Full article
Show Figures

Figure 1

Back to TopTop