Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = microsatellite expansion diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3732 KiB  
Article
A Strategy Potentially Suitable for Combined Preimplantation Genetic Testing of Aneuploidy and Monogenic Disease That Permits Direct Detection of Pathogenic Variants Including Repeat Expansions and Gene Deletions
by Vivienne J. Tan, Ying Liang, Arnold S. Tan, Simin Wong, Nur Asherah, Pengyian Chua, Caroline G. Lee, Mahesh A. Choolani, Truong Dang and Samuel S. Chong
Int. J. Mol. Sci. 2025, 26(10), 4532; https://doi.org/10.3390/ijms26104532 - 9 May 2025
Viewed by 668
Abstract
Combined preimplantation genetic testing of aneuploidy (PGT-A) and monogenic disease (PGT-M) can be achieved through PCR-based whole genome amplification (WGA) and next-generation sequencing (NGS). However, pathogenic variant detection is usually achieved indirectly through single nucleotide polymorphism haplotyping, as direct detection of pathogenic variants [...] Read more.
Combined preimplantation genetic testing of aneuploidy (PGT-A) and monogenic disease (PGT-M) can be achieved through PCR-based whole genome amplification (WGA) and next-generation sequencing (NGS). However, pathogenic variant detection is usually achieved indirectly through single nucleotide polymorphism haplotyping, as direct detection of pathogenic variants is not always possible. We evaluated whether isothermal WGA was suitable for combined PGT-A and PGT-M that also permitted direct detection of repeat expansions and large deletions, in addition to indirect linkage analysis using microsatellite markers. Five-cell replicates from selected cell lines were subjected to isothermal or PCR-based WGA, followed by NGS-based PGT-A and direct and indirect PGT-M of Huntington’s disease and spinal muscular atrophy. Both WGA methods accurately detected aneuploidy and large (10 Mb) segmental imbalances. However, isothermal WGA produced higher genotyping accuracy compared with PCR-based WGA for all analysed microsatellite markers (93.5% vs. 75.6%), as well as at the HTT CAG repeat locus (100% vs. 7.7%) and the SMN1/2 locus (100% vs. 71.8%). These results demonstrate that isothermal WGA is potentially ideal for combined PGT-A and PGT-M that permits both direct and indirect detection of pathogenic variants including repeat expansions and gene deletions. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

13 pages, 1732 KiB  
Article
Preimplantation Genetic Testing of Spinocerebellar Ataxia Type 3/Machado–Joseph Disease—Robust Tools for Direct and Indirect Detection of the ATXN3 (CAG)n Repeat Expansion
by Mulias Lian, Vivienne J. Tan, Riho Taguchi, Mingjue Zhao, Gui-Ping Phang, Arnold S. Tan, Shuling Liu, Caroline G. Lee and Samuel S. Chong
Int. J. Mol. Sci. 2024, 25(15), 8073; https://doi.org/10.3390/ijms25158073 - 24 Jul 2024
Cited by 1 | Viewed by 1587
Abstract
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple [...] Read more.
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD. Full article
Show Figures

Figure 1

22 pages, 5483 KiB  
Article
BlockmiR AONs as Site-Specific Therapeutic MBNL Modulation in Myotonic Dystrophy 2D and 3D Muscle Cells and HSALR Mice
by Sarah J. Overby, Estefanía Cerro-Herreros, Jorge Espinosa-Espinosa, Irene González-Martínez, Nerea Moreno, Juan M. Fernández-Costa, Jordina Balaguer-Trias, Javier Ramón-Azcón, Manuel Pérez-Alonso, Thorleif Møller, Beatriz Llamusí and Rubén Artero
Pharmaceutics 2023, 15(4), 1118; https://doi.org/10.3390/pharmaceutics15041118 - 31 Mar 2023
Cited by 5 | Viewed by 3527
Abstract
The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing [...] Read more.
The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes. Full article
(This article belongs to the Special Issue Recent Trends in Oligonucleotide Based Therapies)
Show Figures

Graphical abstract

28 pages, 1456 KiB  
Review
Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1
by Thiéry De Serres-Bérard, Siham Ait Benichou, Dominic Jauvin, Mohamed Boutjdir, Jack Puymirat and Mohamed Chahine
Int. J. Mol. Sci. 2022, 23(21), 13359; https://doi.org/10.3390/ijms232113359 - 1 Nov 2022
Cited by 16 | Viewed by 5828
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3′ UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the [...] Read more.
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3′ UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases. Full article
(This article belongs to the Special Issue Myotonic Dystrophies: From Genes to Novel Therapeutic Avenues)
Show Figures

Figure 1

13 pages, 1157 KiB  
Article
Genetic Diversity and Population Genetic Structure of Aedes albopictus in the Yangtze River Basin, China
by Heng-Duan Zhang, Jian Gao, Chun-Xiao Li, Zu Ma, Yuan Liu, Ge Wang, Qing Liu, Dan Xing, Xiao-Xia Guo, Teng Zhao, Yu-Ting Jiang, Yan-De Dong and Tong-Yan Zhao
Genes 2022, 13(11), 1950; https://doi.org/10.3390/genes13111950 - 26 Oct 2022
Cited by 5 | Viewed by 2297
Abstract
Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. The genetic variation and population structure of [...] Read more.
Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. The genetic variation and population structure of Ae. albopictus populations collected from 22 cities along the Yangtze River Basin were investigated with nine microsatellite loci and the mitochondrial CoxI gene. The polymorphic information content (PIC) values ranged from 0.534 to 0.871. The observed number of alleles (Na) values ranged from 5.455 to 11.455, and the effective number of alleles (Ne) values ranged from 3.106 to 4.041. The Shannon Index (I) ranged from 1.209 to 1.639. The observed heterozygosity (Ho) values ranged from 0.487 to 0.545. The FIS value ranged from 0.047 to 0.212. All Ae. albopictus populations were adequately allocated to three clades with significant genetic differences. Haplotype 2 is the most primitive molecular type and forms 26 other haplotypes after one or more site mutations. The rapid expansion of high-speed rail, aircraft routes and highways along the Yangtze River Basin have accelerated the dispersal and communication of mosquitoes, which appears to have contributed to inhibited population differentiation and promoted genetic diversity among Ae. albopictus populations. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1689 KiB  
Article
Wolf Dispersal Patterns in the Italian Alps and Implications for Wildlife Diseases Spreading
by Francesca Marucco, Kristine L. Pilgrim, Elisa Avanzinelli, Michael K. Schwartz and Luca Rossi
Animals 2022, 12(10), 1260; https://doi.org/10.3390/ani12101260 - 13 May 2022
Cited by 18 | Viewed by 5151
Abstract
Wildlife dispersal directly influences population expansion patterns, and may have indirect effects on the spread of wildlife diseases. Despite its importance to conservation, little is known about dispersal for several species. Dispersal processes in expanding wolf (Canis lupus) populations in Europe [...] Read more.
Wildlife dispersal directly influences population expansion patterns, and may have indirect effects on the spread of wildlife diseases. Despite its importance to conservation, little is known about dispersal for several species. Dispersal processes in expanding wolf (Canis lupus) populations in Europe is not well documented. Documenting the natural dispersal pattern of the expanding wolf population in the Alps might help understanding the overall population dynamics and identifying diseases that might be connected with the process. We documented 55 natural dispersal events of the expanding Italian wolf alpine population over a 20-year period through the use of non-invasive genetic sampling. We examined a 16-locus microsatellite DNA dataset of 2857 wolf samples mainly collected in the Western Alps. From this, we identified 915 individuals, recaptured 387 (42.3%) of individuals, documenting 55 dispersal events. On average, the minimum straight dispersal distance was 65.8 km (±67.7 km), from 7.7 km to 517.2 km. We discussed the potential implications for maintaining genetic diversity of the population and for wildlife diseases spreading. Full article
(This article belongs to the Collection Wildlife Disease Ecology and Management)
Show Figures

Figure 1

20 pages, 1559 KiB  
Review
Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions
by Nan Zhang and Tetsuo Ashizawa
Cells 2022, 11(9), 1567; https://doi.org/10.3390/cells11091567 - 6 May 2022
Cited by 9 | Viewed by 3463
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms [...] Read more.
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases. Full article
Show Figures

Figure 1

12 pages, 1019 KiB  
Article
Characterisation of Non-Pathogenic Premutation-Range Myotonic Dystrophy Type 2 Alleles
by Jan Radvanszky, Michaela Hyblova, Eva Radvanska, Peter Spalek, Alica Valachova, Gabriela Magyarova, Csaba Bognar, Emil Polak, Tomas Szemes and Ludevit Kadasi
J. Clin. Med. 2021, 10(17), 3934; https://doi.org/10.3390/jcm10173934 - 31 Aug 2021
Cited by 4 | Viewed by 2633
Abstract
Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, [...] Read more.
Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, premutation range and, in rare cases, also non-disease associated alleles containing uninterrupted CCTG tracts have been described, the threshold between these categories is poorly characterised. Here, we describe four families with members reporting neuromuscular complaints, in whom we identified altogether nine ambiguous CNBP alleles containing uninterrupted CCTG repeats in the range between 32 and 42 repeats. While these grey-zone alleles are most likely not pathogenic themselves, since other pathogenic mutations were identified and particular family structures did not support their pathogenic role, they were found to be unstable during intergenerational transmission. On the other hand, there was no observable general microsatellite instability in the genome of the carriers of these alleles. Our results further refine the division of CNBP CCTG repeat alleles into two major groups, i.e., interrupted and uninterrupted alleles. Both interrupted and uninterrupted alleles with up to approximately 30 CCTG repeats were shown to be generally stable during intergenerational transmission, while intergenerational as well as somatic instability seems to gradually increase in uninterrupted alleles with tract length growing above this threshold. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

15 pages, 1214 KiB  
Review
(Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders
by Xiaonan Zhao and Karen Usdin
Int. J. Mol. Sci. 2021, 22(17), 9167; https://doi.org/10.3390/ijms22179167 - 25 Aug 2021
Cited by 13 | Viewed by 3741
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and [...] Read more.
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5′ UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders. Full article
(This article belongs to the Special Issue Impacts of Molecular Structure on Nucleic Acid-Protein Interactions)
Show Figures

Figure 1

17 pages, 908 KiB  
Review
CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities
by Renée H.L. Raaijmakers, Lise Ripken, C. Rosanne M. Ausems and Derick G. Wansink
Int. J. Mol. Sci. 2019, 20(15), 3689; https://doi.org/10.3390/ijms20153689 - 27 Jul 2019
Cited by 27 | Viewed by 7485
Abstract
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the [...] Read more.
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. Full article
(This article belongs to the Special Issue Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics)
Show Figures

Graphical abstract

20 pages, 3168 KiB  
Review
Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy
by Łukasz J. Sznajder and Maurice S. Swanson
Int. J. Mol. Sci. 2019, 20(13), 3365; https://doi.org/10.3390/ijms20133365 - 9 Jul 2019
Cited by 72 | Viewed by 12264
Abstract
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK [...] Read more.
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly. Full article
(This article belongs to the Special Issue Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics)
Show Figures

Figure 1

21 pages, 5046 KiB  
Review
The Emerging Role of DNA Damage in the Pathogenesis of the C9orf72 Repeat Expansion in Amyotrophic Lateral Sclerosis
by Anna Konopka and Julie D Atkin
Int. J. Mol. Sci. 2018, 19(10), 3137; https://doi.org/10.3390/ijms19103137 - 12 Oct 2018
Cited by 31 | Viewed by 9391
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder. Full article
(This article belongs to the Special Issue DNA Replication Stress)
Show Figures

Graphical abstract

48 pages, 1876 KiB  
Review
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions
by April L. Darling and Vladimir N. Uversky
Molecules 2017, 22(12), 2027; https://doi.org/10.3390/molecules22122027 - 24 Nov 2017
Cited by 55 | Viewed by 8301
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, [...] Read more.
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions. Full article
Show Figures

Graphical abstract

Back to TopTop