Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = microfragmented lipoaspirate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1433 KiB  
Article
Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics
by Camillo Morano, Michele Dei Cas, Giulio Alessandri, Valentina Coccè, Francesca Paino, Monica Bignotto, Luisa Doneda, Carlo Tremolada, Augusto Pessina and Rita Paroni
Biomolecules 2025, 15(7), 964; https://doi.org/10.3390/biom15070964 - 4 Jul 2025
Viewed by 314
Abstract
Mesenchymal stem cells (MSCs) exhibit low immunogenicity, multipotency, and are abundantly present in adipose tissue, making this tissue an easily accessible resource for regenerative medicine. Different commercial procedures have been developed to micro-fragment the adipose tissue aspirate from patients before its reinjection. We [...] Read more.
Mesenchymal stem cells (MSCs) exhibit low immunogenicity, multipotency, and are abundantly present in adipose tissue, making this tissue an easily accessible resource for regenerative medicine. Different commercial procedures have been developed to micro-fragment the adipose tissue aspirate from patients before its reinjection. We explored a commercial device which mechanically micro-fragments human lipoaspirate (LA) resulting in a homogeneous micro-fragmentation of fat tissue (MFAT). This device has been successfully employed in several clinical applications involving autologous adipose tissue transplantation. Here, we compare the untargeted/targeted lipidomic profile of LA and MFAT looking for differences in terms of qualitative modifications occurring during the handling of the original LA material. In MFAT, different lipid subclasses such as diacylglycerols, triacylglycerols, phospholipids, and sphingolipids are more represented than in LA. In addition, via targeted fatty acids analysis, we found a lower abundance of monounsaturated fatty acids in MFAT. The biological implications of these findings must be better investigated to contribute to a better understanding of the clinical efficacy of MFAT and for its potential use as a scaffold for drug delivery applications. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

17 pages, 4752 KiB  
Article
CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis
by Ekta Manocha, Alessandra Consonni, Fulvio Baggi, Emilio Ciusani, Valentina Cocce, Francesca Paino, Carlo Tremolada, Arnaldo Caruso and Giulio Alessandri
Int. J. Mol. Sci. 2022, 23(10), 5806; https://doi.org/10.3390/ijms23105806 - 22 May 2022
Cited by 14 | Viewed by 2939
Abstract
Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs [...] Read more.
Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs were isolated from human micro-fragmented adipose tissue (MFAT) obtained from fat lipoaspirate and were characterized as NG2+/PDGFRβ+/CD105+ cells. Here, we tested the fat-derived PCs for the dispensability of the CD146 marker with the aim of better understanding the role of these PC subpopulations on angiogenesis. Cells from both CD146-positive (CD146+) and negative (CD146) populations were observed to interact with human umbilical vein ECs (HUVECs). In addition, fat-derived PCs were able to induce angiogenesis of ECs in spheroids assay; and conditioned medium (CM) from both PCs and fat tissue itself led to the proliferation of ECs, thereby marking their role in angiogenesis stimulation. However, we found that CD146+ cells were more responsive to PDGF-BB-stimulated migration, adhesion, and angiogenic interaction with ECs, possibly owing to their higher expression of NCAM/CD56 than the corresponding CD146 subpopulation. We conclude that in fat tissue, CD146-expressing cells may represent a more mature pericyte subpopulation that may have higher efficacy in controlling and stimulating vascular regeneration and stabilization than their CD146-negative counterpart. Full article
Show Figures

Figure 1

20 pages, 3486 KiB  
Article
Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators
by Enrico Ragni, Marco Viganò, Enrica Torretta, Carlotta Perucca Orfei, Alessandra Colombini, Carlo Tremolada, Cecilia Gelfi and Laura de Girolamo
J. Clin. Med. 2022, 11(8), 2231; https://doi.org/10.3390/jcm11082231 - 15 Apr 2022
Cited by 13 | Viewed by 2948
Abstract
The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a [...] Read more.
The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a thorough fingerprint of released molecules is largely missing. The purpose of this study was to first characterize both structure and cell content of unprocessed lipoaspirate (LA) and µFAT, and further identify and frame the array of signaling factors in the context of OA disease, by means of high throughput qRT-PCR for extracellular-vesicle (EV) embedded miRNAs and proteomics for tissue and secreted factors. Cell count showed reduction of blood cells in µFAT, confirmed by histological and flow cytometry analyses, that also showed a conserved presence of structural, endothelial and stromal components and pericytes. In the secretome, 376 and 381 EV-miRNAs in LA and µFAT, respectively, were identified. In particular, most abundant and µFAT upregulated EV-miRNAs were mainly recapitulating those already reported as ASC-EVs-specific, with crucial roles in cartilage protection and M2 macrophage polarization, while only a scarce presence of those related to blood cells emerged. Furthermore, secretome proteomic analysis revealed reduction in µFAT of acute phase factors driving OA progression. Taken together, these results suggest that processing of LA into µFAT allows for removal of blood elements and maintenance of tissue structure and stromal cell populations, and possibly the increase of OA-protective molecular features. Thus, microfragmentation represents a safe and efficient method for the application of adipose tissue properties in the frame of musculoskeletal disorders. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

19 pages, 2088 KiB  
Article
Lipoaspirate Shows In Vitro Potential for Wound Healing
by Chiara Ceresa, Alessia Borrone, Letizia Fracchia, Maurizio Rinaldi, Alice Marchetti, Carlo Tremolada and Michela Bosetti
Pharmaceutics 2022, 14(2), 447; https://doi.org/10.3390/pharmaceutics14020447 - 19 Feb 2022
Cited by 6 | Viewed by 3330
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to [...] Read more.
Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies. Full article
(This article belongs to the Special Issue Biomaterials in Skin Wound Healing and Tissue Regenerations)
Show Figures

Figure 1

17 pages, 6028 KiB  
Article
Polychromatic Flow Cytometric Analysis of Stromal Vascular Fraction from Lipoaspirate and Microfragmented Counterparts Reveals Sex-Related Immunophenotype Differences
by Lucija Zenic, Denis Polancec, Damir Hudetz, Zeljko Jelec, Eduard Rod, Dinko Vidovic, Mario Staresinic, Srecko Sabalic, Trpimir Vrdoljak, Tadija Petrovic, Fabijan Cukelj, Vilim Molnar, Martin Cemerin, Vid Matisic, Petar Brlek, Zrinka Djukic Koroljevic, Igor Boric, Gordan Lauc and Dragan Primorac
Genes 2021, 12(12), 1999; https://doi.org/10.3390/genes12121999 - 16 Dec 2021
Cited by 9 | Viewed by 3466
Abstract
Mesenchymal stem/stromal cells or medicinal signaling cells (MSC)-based therapy holds promise as a beneficial strategy for treating knee OA (osteoarthritis), but there is no standardized protocols nor mechanistic understanding. In order to gain a better insight into the human MSC from adipose tissue [...] Read more.
Mesenchymal stem/stromal cells or medicinal signaling cells (MSC)-based therapy holds promise as a beneficial strategy for treating knee OA (osteoarthritis), but there is no standardized protocols nor mechanistic understanding. In order to gain a better insight into the human MSC from adipose tissue applied for autologous OA treatment, we performed extensive comparative immunophenotyping of the stromal vascular fraction from lipoaspirate or microfragmented lipoaspirates by polychromatic flow cytometry and investigated the cellular components considered responsible for cartilage regeneration. We found an enrichment of the regenerative cellular niche of the clinically applied microfragmented stromal vascular fraction. Sex-related differences were observed in the MSC marker expression and the ratio of the progenitor cells from fresh lipoaspirate, which, in female patients, contained a higher expression of CD90 on the three progenitor cell types including pericytes, a higher expression of CD105 and CD146 on CD31highCD34high endothelial progenitors as well as of CD73 on supra-adventitialadipose stromal cells. Some of these MSC-expression differences were present after microfragmentation and indicated a differential phenotype pattern of the applied MSC mixture in female and male patients. Our results provide a better insight into the heterogeneity of the adipose MSC subpopulations serving as OA therapeutics, with an emphasis on interesting differences between women and men. Full article
(This article belongs to the Special Issue Genetics and Stem Cell Research)
Show Figures

Figure 1

14 pages, 5033 KiB  
Article
Simple and Rapid Non-Enzymatic Procedure Allows the Isolation of Structurally Preserved Connective Tissue Micro-Fragments Enriched with SVF
by Alice Busato, Francesco De Francesco, Reetuparna Biswas, Silvia Mannucci, Giamaica Conti, Giulio Fracasso, Anita Conti, Valentina Riccio, Michele Riccio and Andrea Sbarbati
Cells 2021, 10(1), 36; https://doi.org/10.3390/cells10010036 - 29 Dec 2020
Cited by 36 | Viewed by 5323
Abstract
The stromal vascular fraction (SVF) consists of a heterogeneous population of stem and stromal cells, generally obtained from adipose tissue by enzymatic digestion. For human cell-based therapies, mechanical process methods to obtain SVF represent an advantageous approach because they have fewer regulatory restrictions [...] Read more.
The stromal vascular fraction (SVF) consists of a heterogeneous population of stem and stromal cells, generally obtained from adipose tissue by enzymatic digestion. For human cell-based therapies, mechanical process methods to obtain SVF represent an advantageous approach because they have fewer regulatory restrictions for their clinical use. The aim of this study was to characterize a novel commercial system for obtaining SVF from adipose tissue by a mechanical approach without substantial manipulations. Lipoaspirate samples collected from 27 informed patients were processed by a simple and fast mechanical system (by means of Hy-Tissue SVF). The Hy-Tissue SVF product contained a free cell fraction and micro-fragments of stromal connective tissue. The enzymatic digestion of the micro-fragments increased the yield of free cells (3.2 times) and CFU-F (2.4 times). Additionally, 10% of free cells from SVF were positive for CD34+, suggesting the presence of endothelial cells, pericytes, and potential adipose-derived stem cells (ADSC). Moreover, the SVF cells were able to proliferate and differentiate in vitro toward adipocytes, osteocytes, and chondrocytes. The immunophenotypic analysis of expanded cells showed positivity for typical mesenchymal stem cell markers. The Hy-Tissue SVF system allows the isolation of stromal vascular fraction, making this product of potential interest in regenerative medicine. Full article
(This article belongs to the Collection Research on Adipose Stem Cells)
Show Figures

Graphical abstract

7 pages, 2057 KiB  
Article
Preliminary Study on the Echo-Assisted Intersphincteric Autologous Microfragmented Adipose Tissue Injection to Control Fecal Incontinence in Children Operated for Anorectal Malformations
by Giovanni Parente, Valentina Pinto, Neil Di Salvo, Simone D’Antonio, Michele Libri, Tommaso Gargano, Vincenzo Davide Catania, Giovanni Ruggeri and Mario Lima
Children 2020, 7(10), 181; https://doi.org/10.3390/children7100181 - 13 Oct 2020
Cited by 9 | Viewed by 5577
Abstract
Aim of the study: To assess the efficacy of a novel technique (echo-assisted intersphincteric autologous microfragmented adipose tissue injection, also called “anal-lipofilling”) in the management of non-responsive fecal incontinence in children born with anorectal malformations (ARMs). Methods: Following ethical committee approval (CHPED-MAR-18-02), anal-lipofilling [...] Read more.
Aim of the study: To assess the efficacy of a novel technique (echo-assisted intersphincteric autologous microfragmented adipose tissue injection, also called “anal-lipofilling”) in the management of non-responsive fecal incontinence in children born with anorectal malformations (ARMs). Methods: Following ethical committee approval (CHPED-MAR-18-02), anal-lipofilling was proposed to patients with fecal incontinence not responsive to medications or bowel management (bowel enema and/or transanal irrigation automatic systems), then a prospective study was conducted. Anal-lipofilling consisted of three phases: lipoaspiration from the abdominal wall, processing of the lipoaspirate with a Lipogems system and intersphincteric injection of the processed fat tissue via endosonographic assistance. A questionnaire based on Krickenbeck’s scale (KS) was administered to the patients to evaluate the clinical outcome. Main Results: Four male patients (three recto-urethral fistula, and one recto-perineal fistula) underwent the anal-lipofilling procedure at a mean age of 13.0 ± 4.2 yrs. There were no complications during or after the procedure. From an initial assessment of the patients there was an improvement in the bowel function at a median follow up of 6 months, with better scores at KS (100% Soiling grade three pre-treatment vs. 75% grade one post-treatment). Conclusions: Even if our Study is preliminary, echo-assisted anal-lipofilling could be considered as a feasible and safe alternative technique in the management of the fecal incontinence in non-responding ARMs patients. More studies are still necessary to support the validity of the implant of autologous adipose tissue in the anal sphincter as a therapy for fecal incontinence in children born with ARMs. Full article
(This article belongs to the Special Issue Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

9 pages, 214 KiB  
Article
A 24-Month Follow-Up Study of the Effect of Intra-Articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis
by Igor Borić, Damir Hudetz, Eduard Rod, Željko Jeleč, Trpimir Vrdoljak, Andrea Skelin, Ozren Polašek, Mihovil Plečko, Irena Trbojević-Akmačić, Gordan Lauc and Dragan Primorac
Genes 2019, 10(12), 1051; https://doi.org/10.3390/genes10121051 - 17 Dec 2019
Cited by 56 | Viewed by 5645
Abstract
Osteoarthritis (OA) is a widely prevalent disease worldwide, and with an increasingly ageing society, it has become a challenge for the field of regenerative medicine. OA is a disease process involving multiple joint tissues, including those not visible on radiography, and is a [...] Read more.
Osteoarthritis (OA) is a widely prevalent disease worldwide, and with an increasingly ageing society, it has become a challenge for the field of regenerative medicine. OA is a disease process involving multiple joint tissues, including those not visible on radiography, and is a complex disease process with multiple phenotypes that require evaluation by a multimodality imaging assessment. The purpose of this study was to evaluate the effect of micro-fragmented fat tissue intra-articular injection 24 months after application in two ways: Indirectly using functional magnetic resonance imaging (MRI) assessment analyzing the glycosaminoglycans (GAG) content in cartilage by means of delayed gadolinium (Gd)-enhanced magnetic resonance imaging of cartilage (dGEMRIC), as well as clinical outcome on observed level of GAG using standard orthopedic physical examination including VAS assessment. In our previous study assessing comprehensive results after 12 months, the dGEMRIC results have drawn attention. The present study explores the long-term effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2018. A total of 17 patients were enrolled in the study, and 32 knees were assessed in a 12-month follow-up, but only 10 patients of them with 18 knees are included in a 24-month follow-up. The rest of the seven patients dropped out of the study 12 months after follow-up: three patients underwent knee arthroplasty, and the remaining four did not fulfil the basic criteria of 24 months involvement in the study. Surgical intervention (lipoaspiration), followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s), was performed in all patients. Patients were assessed for a visual analog scale (VAS), dGEMRIC at the baseline, three, six, 12 and 24 months after the treatment. A magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively-charged contrast gadopentetate dimeglumine (Gd-DTPA2) into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. Our results suggest that this method of single intra-articular injection of autologous microfragmented adipose tissue improves GAG content on a significant scale, with over half of the measurements suggesting relevant improvement 24 months after intra-articular injection opposed to the expected GAG decrease over the natural course of the disease. Full article
(This article belongs to the Special Issue Stem Cells Application in Clinical Practice: Advances and Challenges)
11 pages, 4024 KiB  
Communication
Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart
by Denis Polancec, Lucija Zenic, Damir Hudetz, Igor Boric, Zeljko Jelec, Eduard Rod, Trpimir Vrdoljak, Andrea Skelin, Mihovil Plecko, Mirjana Turkalj, Boro Nogalo and Dragan Primorac
Genes 2019, 10(6), 474; https://doi.org/10.3390/genes10060474 - 21 Jun 2019
Cited by 31 | Viewed by 5321
Abstract
Osteoarthritis (OA) is a degenerative joint disease accompanied by pain and loss of function. Adipose tissue harbors mesenchymal stem/stromal cells (MSC), or medicinal signaling cells as suggested by Caplan (Caplan, 2017), used in autologous transplantation in many clinical settings. The aim of the [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease accompanied by pain and loss of function. Adipose tissue harbors mesenchymal stem/stromal cells (MSC), or medicinal signaling cells as suggested by Caplan (Caplan, 2017), used in autologous transplantation in many clinical settings. The aim of the study was to characterize a stromal vascular fraction from microfragmented lipoaspirate (SVF-MLA) applied for cartilage treatment in OA and compare it to that of autologous lipoaspirate (SVF-LA). Samples were first stained using a DuraClone SC prototype tube for the surface detection of CD31, CD34, CD45, CD73, CD90, CD105, CD146 and LIVE/DEAD Yellow Fixable Stain for dead cell detection, followed by DRAQ7 cell nuclear dye staining, and analyzed by flow cytometry. In SVF-LA and SVF-MLA samples, the following population phenotypes were identified within the CD45 fraction: CD31+CD34+CD73±CD90±CD105±CD146± endothelial progenitors (EP), CD31+CD34CD73±CD90±CD105CD146± mature endothelial cells, CD31CD34CD73±CD90+CD105CD146+ pericytes, CD31CD34+CD73±CD90+CD105CD146+ transitional pericytes, and CD31CD34+CD73highCD90+CD105CD146 supra-adventitial-adipose stromal cells (SA-ASC). The immunophenotyping profile of SVF-MLA was dominated by a reduction of leukocytes and SA-ASC, and an increase in EP, evidencing a marked enrichment of this cell population in the course of adipose tissue microfragmentation. The role of EP in pericyte-primed MSC-mediated tissue healing, as well as the observed hormonal implication, is yet to be investigated. Full article
(This article belongs to the Special Issue Stem Cells Application in Clinical Practice: Advances and Challenges)
Show Figures

Figure 1

17 pages, 5400 KiB  
Article
The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis
by Damir Hudetz, Igor Borić, Eduard Rod, Željko Jeleč, Andrej Radić, Trpimir Vrdoljak, Andrea Skelin, Gordan Lauc, Irena Trbojević-Akmačić, Mihovil Plečko, Ozren Polašek and Dragan Primorac
Genes 2017, 8(10), 270; https://doi.org/10.3390/genes8100270 - 13 Oct 2017
Cited by 91 | Viewed by 9114
Abstract
Osteoarthritis (OA) is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to [...] Read more.
Osteoarthritis (OA) is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration) followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s) was performed in all patients. Patients were assessed for visual analogue scale (VAS), delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and immunoglobulin G (IgG) glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2−) into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI) increased glycosaminoglycan (GAG) content in hyaline cartilage, which is in line with observed VAS and clinical results. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop