Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = micro-confined aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14671 KB  
Article
Field Pumping and Recharge Test Study for Confined Aquifers in Super-Large Deep Foundation Pit Group Sites
by Shuo Wang, Weidong Wang, Zhonghua Xu, Qingjun Song and Jiangu Qian
Buildings 2025, 15(8), 1383; https://doi.org/10.3390/buildings15081383 - 21 Apr 2025
Cited by 1 | Viewed by 1081
Abstract
To ensure the stability of deep foundation pits in confined aquifers, dewatering is often required. However, pumping from confined aquifers in large deep foundation pit groups may lead to significant environmental deformations. Therefore, field pumping and recharge tests are required to guide design [...] Read more.
To ensure the stability of deep foundation pits in confined aquifers, dewatering is often required. However, pumping from confined aquifers in large deep foundation pit groups may lead to significant environmental deformations. Therefore, field pumping and recharge tests are required to guide design of groundwater and environmental deformation control scheme. Focusing on a super-large deep foundation pit group in Shanghai, single-well pumping, multi-well pumping, and recharge tests were conducted in distinct geological zones (normally consolidated area and paleochannel zone). The hydraulic connectivity and spatiotemporal patterns of groundwater drawdown and soil settlement were systematically analyzed. The results show that: (1) There exists a certain hydraulic connection between the first and second confined aquifers. In the paleochannel area, the aquitard between the micro-confined and the first confined aquifer is insufficient to completely block hydraulic connectivity. (2) The ratio of ground surface settlement to groundwater drawdown is about 3.4 mm/m, and the deep soil settlement is significantly or even greater than the surface settlement, so it is necessary to strengthen the monitoring of deep settlement. (3) Recharge can elevate the groundwater and reduce settlement; however, it is difficult to eliminate the variation in settlement along the vertical direction. Full article
Show Figures

Figure 1

23 pages, 6987 KB  
Article
Moisture Migration and Recharge Pattern of Low-Permeability Thick Cohesive Soil in Northern Margin of the Jianghan Plain
by Tianwen Liu, Ningtao Wang, Cheng Hu, Qing Wang, Kun Huang, Zhihua Chen and Tingting Shi
Appl. Sci. 2023, 13(23), 12720; https://doi.org/10.3390/app132312720 - 27 Nov 2023
Cited by 1 | Viewed by 1846
Abstract
An extremely low hydraulic conductivity of cohesive soil causes a low transport rate of water and solute, with a time-consuming result, as we all know. Stable isotopes (δD and δ18O) and in situ monitoring systems of the data about soil water, [...] Read more.
An extremely low hydraulic conductivity of cohesive soil causes a low transport rate of water and solute, with a time-consuming result, as we all know. Stable isotopes (δD and δ18O) and in situ monitoring systems of the data about soil water, rainfall, and groundwater were used to analyze the soil moisture migration pattern, using a conceptual model in the field test site, simulated by Hydrus 1D. The results show that multiple rainfalls’ accumulations can cause the water to recharge from soil moisture to micro-confined groundwater, gradually. The soil moisture dynamic change is composed of a dehydration period and absorption period; the cohesive soil water content below 5.0 m was affected by the micro-confined groundwater level and dehydrated in advance due to the level decline. The thick cohesive soil profile can be divided into a shallow mixing zone (0–2 m), steady zone (2–5 m), and deep mixing zone (5–15 m). The effective precipitation recharge was 234 mm and the average infiltration recharge coefficient (Rc) was 0.1389, but the water exchange between the cohesive soil moisture and groundwater was 349 mm in two hydrological years. This paper reveals the moisture migration and recharge pattern of low-permeability thick cohesive soil in a humid area with a micro-confined groundwater aquifer; this is of great significance for groundwater resources evaluation and environmental protection in humid climate plain areas. Full article
(This article belongs to the Special Issue State-of-the-Art Earth Sciences and Geography in China)
Show Figures

Figure 1

26 pages, 9978 KB  
Article
Study on the Nonlinear Permeability Mechanism and Pore Structure Characteristics of Deep Confined Aquifers
by Shilong Peng, Zhijun Li, Yuhao Xu and Guangyong Cao
Appl. Sci. 2023, 13(20), 11599; https://doi.org/10.3390/app132011599 - 23 Oct 2023
Cited by 2 | Viewed by 1573
Abstract
The study of deep soil mechanics is the basis of deep shaft construction. Exploring the nonlinear permeability mechanism of deep confined aquifers in depth is the prerequisite and foundation for carrying out calculations of the hydrophobic consolidation settlement of thick alluviums and preventing [...] Read more.
The study of deep soil mechanics is the basis of deep shaft construction. Exploring the nonlinear permeability mechanism of deep confined aquifers in depth is the prerequisite and foundation for carrying out calculations of the hydrophobic consolidation settlement of thick alluviums and preventing and controlling deep-well-damage disasters. Against the background of shaft damage caused by hydrophobic consolidation settlement of the bottom aquifer of thick alluviums, a joint HPLTC-HPPNP (high-pressure long-term consolidation and high-pore-pressure nonlinear permeability) test was carried out on the bottom aquifer of thick alluviums based on the ETAS test system. This paper studied the evolution law of the permeability coefficient (kv) of bottom aquifers under different heads of confined water, confining pressures (σr), permeability hydraulic gradients (i) and loading–unloading methods. The internal pore structure characteristics of clayey sand were obtained by using low-field nuclear magnetic resonance (NMR) technology to explore the clayey sand’s nonlinear permeability micro-mechanism. The research results showed that the bottom aquifer seepage volume (ΔQi) under high stress is affected by the head pressure difference and pore water dissipation, and kv decreases with an increasing σr according to the power function relationship. The influence of the hydraulic gradient (i) on kv is significantly influenced by σr. When σr  < 4 MPa, kv decreased with an increasing i, and when σr  > 4 MPa, kv increased with an increasing i first, then decreased, before then tending to be stable. Under different stress states, the T2 spectrum of clayey sand showed a bispectrum peak type, and the adsorbed water content decreased linearly with an increasing σr, while the capillary water decreased according to the power function. The content of capillary water in the permeable pores plays a key role in the permeability of clayey sand, and it has a power function relationship with σr. The research results of this paper provide a good experimental method for the study of deep soil permeability characteristics and parameter determination, provide a theoretical basis for deep alluvial hydrophobic consolidation and settlement, and further make up for the shortcomings of existing deep soil mechanics in permeability characteristics. Full article
(This article belongs to the Special Issue Recent Advances in Tunneling and Underground Space Technology)
Show Figures

Figure 1

18 pages, 11868 KB  
Article
Numerical Research on Migration Law of Typical Chlorinated Organic Matter in Shallow Groundwater of Yangtze Delta Region
by Jiang Zhou, Bing Song, Lei Yu, Wenyi Xie, Xiaohui Lu, Dengdeng Jiang, Lingya Kong, Shaopo Deng and Min Song
Water 2023, 15(7), 1381; https://doi.org/10.3390/w15071381 - 3 Apr 2023
Cited by 6 | Viewed by 2593
Abstract
With the reform of China’s urbanization increasing in popularity, the security issues posed by urban groundwater, especially groundwater in industrial areas, have attracted scholars’ attention. This research aimed to predict and quantify the migration process of contaminants in a microconfined aquifer by conducting [...] Read more.
With the reform of China’s urbanization increasing in popularity, the security issues posed by urban groundwater, especially groundwater in industrial areas, have attracted scholars’ attention. This research aimed to predict and quantify the migration process of contaminants in a microconfined aquifer by conducting a groundwater contamination investigation in an abandoned chemical plant in the Jiangsu Province of China. First, data such as regional hydrogeological parameters and types of contaminants were obtained via hydrogeological drilling, groundwater well monitoring, pumping tests, and laboratory permeability tests, which helped identify the most serious pollution factor: chloroform. Then, a groundwater flow model was built using the Groundwater Modeling System (GMS) and verified using the general-purpose parameter estimation (PEST) package. In addition, based on the three-dimensional multi-species model for transport (MT3DMS) in GMS, a transport model was established. The results illustrate that the plume range of chloroform diffuses with water flow, but, because of its slow diffusion rate and inability to degrade naturally, the concentration of the contaminant has remained several times higher than the safety standard for a long time. The contaminant spread vertically to the soil layer above the microconfined aquifer under pressure, resulting in direct pollution. In addition, the contaminant in the microconfined aquifer is anticipated to migrate down to the clay layer and become enriched. However, the first confined aquifer has not been seriously polluted in the past 20 years. Finally, a sensitivity analysis of the parameters shows that groundwater contamination in the Yangtze delta region is greatly affected by precipitation recharge and hydraulic conductivity. Full article
Show Figures

Figure 1

17 pages, 5191 KB  
Article
Deformation and Failure Mechanism of Weakly Cemented Mudstone under Tri-Axial Compression: From Laboratory Tests to Numerical Simulation
by Haijun Yu, Honglin Liu, Yinjian Hang, Jinhu Liu and Shuqi Ma
Minerals 2022, 12(2), 153; https://doi.org/10.3390/min12020153 - 26 Jan 2022
Cited by 7 | Viewed by 3578
Abstract
The success of the water-preserved mining technology is closely related to the stability of the aquiclude and the aquifer, in particular, which is made of weakly cemented rock mas. This paper starts with the tri-axial compression tests on the mudstone specimens obtained from [...] Read more.
The success of the water-preserved mining technology is closely related to the stability of the aquiclude and the aquifer, in particular, which is made of weakly cemented rock mas. This paper starts with the tri-axial compression tests on the mudstone specimens obtained from the Ili mining area, followed by the systematic numerical simulation via the Particle Flow Code (PFC) program, aiming at obtaining an in-depth understanding of the response of weakly cemented mudstone under tri-axial compression loading state. The main outcomes obtained from this research indicated that: (1) the behavior of weakly cemented mudstone is closely sensitive to the confining pressure. As the confining pressure increases, both the peak strength and plastic deformation capacity of weakly cemented mudstone will be enhanced; (2) the main feature of weakly cemented mudstone after tests is its centrosymmetric “Z” shape, mainly attributed to the progressive separation of the particle element of mudstone; (3) the behavior of weakly cemented mudstone either in terms of the axial stress-axial strain or the failure mode is sensitive to the confining pressure. If the applied confining pressure is lower than 5 MPa, the micro-cracks are in the form of the single shear band, whereas the tested specimens will tend from brittle shear to plastic shear associated with the “X” shear when the confining pressure is higher than 5 MPa; and (4) The failure of weakly cemented mudstone is mainly attributed to the continuous expansion and penetration of internal microcracks under compression. The brittle failure mode of weakly cemented mudstone tends to ductile failure with the increase of confining pressure. The main contribution of this research is believed to be beneficial in deepening the understanding of the mechanics of weakly cemented mudstone under tri-axial compression and providing the meaningful reference to the practical application of water-preserved mining in the Ili mining area. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

20 pages, 3073 KB  
Article
Experimental Study and Estimation of Groundwater Fluctuation and Ground Settlement due to Dewatering in a Coastal Shallow Confined Aquifer
by Jiong Li, Ming-Guang Li, Lu-Lu Zhang, Hui Chen, Xiao-He Xia and Jin-Jian Chen
J. Mar. Sci. Eng. 2019, 7(3), 58; https://doi.org/10.3390/jmse7030058 - 1 Mar 2019
Cited by 7 | Viewed by 4254
Abstract
The coastal micro-confined aquifer (MCA) in Shanghai is characterized by shallow burial depth, high artesian head, and discontinuous distribution. It has a significant influence on underground space development, especially where the MCA is directly connected with deep confined aquifers. In this paper, a [...] Read more.
The coastal micro-confined aquifer (MCA) in Shanghai is characterized by shallow burial depth, high artesian head, and discontinuous distribution. It has a significant influence on underground space development, especially where the MCA is directly connected with deep confined aquifers. In this paper, a series of pumping well tests were conducted in the MCA located in such area to investigate the dewatering-induced groundwater fluctuations and stratum deformation. In addition, a numerical method is proposed for the estimation of hydraulic parameter, and an empirical prediction method is developed for dewatering-induced ground settlement. Test results show that groundwater drawdowns and soil settlement can be observed not only in MCA but also in the aquifers underneath it. This indicates that there is a close hydraulic connection among each aquifer. Moreover, the distributions and development of soil settlement at various depths are parallel to those of groundwater drawdowns in most areas of the test site except the vicinity of pumping wells, where collapse-induced subsidence due to high-speed flow may occur. Furthermore, the largest deformation usually occurs at the top of the pumping aquifer instead of the ground surface, because the top layer is expanded due to the stress arch formed in it. Finally, the proposed methods are validated to be feasible according to the pumping well test results and can be employed to investigate the responses of groundwater fluctuations and stratum deformations due to dewatering in MCA. Full article
(This article belongs to the Special Issue Coastal Geohazard and Offshore Geotechnics)
Show Figures

Figure 1

Back to TopTop