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Abstract: The study of deep soil mechanics is the basis of deep shaft construction. Exploring the
nonlinear permeability mechanism of deep confined aquifers in depth is the prerequisite and foun-
dation for carrying out calculations of the hydrophobic consolidation settlement of thick alluviums
and preventing and controlling deep-well-damage disasters. Against the background of shaft dam-
age caused by hydrophobic consolidation settlement of the bottom aquifer of thick alluviums, a
joint HPLTC-HPPNP (high-pressure long-term consolidation and high-pore-pressure nonlinear per-
meability) test was carried out on the bottom aquifer of thick alluviums based on the ETAS test
system. This paper studied the evolution law of the permeability coefficient (kv) of bottom aquifers
under different heads of confined water, confining pressures (σr), permeability hydraulic gradients
(i) and loading–unloading methods. The internal pore structure characteristics of clayey sand were
obtained by using low-field nuclear magnetic resonance (NMR) technology to explore the clayey
sand’s nonlinear permeability micro-mechanism. The research results showed that the bottom aquifer
seepage volume (∆Qi) under high stress is affected by the head pressure difference and pore water
dissipation, and kv decreases with an increasing σr according to the power function relationship. The
influence of the hydraulic gradient (i) on kv is significantly influenced by σr. When σr < 4 MPa, kv

decreased with an increasing i, and when σr > 4 MPa, kv increased with an increasing i first, then
decreased, before then tending to be stable. Under different stress states, the T2 spectrum of clayey
sand showed a bispectrum peak type, and the adsorbed water content decreased linearly with an
increasing σr, while the capillary water decreased according to the power function. The content of
capillary water in the permeable pores plays a key role in the permeability of clayey sand, and it has
a power function relationship with σr. The research results of this paper provide a good experimental
method for the study of deep soil permeability characteristics and parameter determination, provide
a theoretical basis for deep alluvial hydrophobic consolidation and settlement, and further make up
for the shortcomings of existing deep soil mechanics in permeability characteristics.

Keywords: thick alluvium; bottom aquifer; clayey sand; permeability; pore structure

1. Introduction

There are large areas of thick alluvium ranging from 400 to 600 m (or even over 700 m)
distributed in parts of East, Central, North, and Northeast China, the lower part of which is
rich in mineral resources. In order to develop the above resources, large-scale construction
of deep shafts has been carried out in China since 2002. Therefore, China’s coal resources
have gradually entered into deep mining; for example, the thickness of the alluvium in
the main shaft of Wanfu Coal Mine has reached 753.95 m. With the development of large-
scale deep shaft construction, the safety of shaft lining structure design in deep shafts has
encountered unprecedented challenges, and the study of deep soil mechanics has become a
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fundamental topic. The safety of the shaft lining structure in deep alluviums ultimately
depends on the interaction between the shaft lining and geotechnical medium. This is the
premise and key to carrying out shaft lining design and safety analysis in deep shafts to
study the mechanical properties of deep soil under high stress [1].

In recent years, several shaft lining fractures have occurred in coal mine shafts built
in deep alluviums in China [2–5]. The main reason for the damage of most of the above-
mentioned shafts is that the bottom gravel layer (hereafter referred to as the “bottom
aquifer”) of the thick alluvium that the damaged coal mine shaft passes through is mostly
directly covered on the coal measure strata. Coal mine production leads to bottom aquifer
hydrophobicity, which causes secondary consolidation and settlement of the soil around the
shaft, resulting in additional vertical forces acting on outer edge of the shaft and ultimately
causing shaft damage. The bottom aquifer of thick alluviums has obvious mechanical
characteristics of high overlying total stress and a high water pressure (confined water).
Furthermore, the problems of additional surface subsidence and shaft deviation caused by
the bottom aquifer hydrophobicity of thick alluviums are also gradually becoming promi-
nent [2,6,7], seriously threatening the production safety of mines and causing significant
economic losses. Therefore, there is an urgent need for deep soil mechanics research to
guide the prevention and control of related deep shaft hazards.

The permeability of soil is one of the basic mechanical properties that characterizes
the infiltration capacity of soil [8,9]. The permeability coefficient (kv) is a parameter that
directly reflects the strength of soil permeability. The kv of deep soil under high stress is
an important parameter for calculating the hydrophobic settlement deformation of thick
alluviums. More importantly, it forms the basis for revealing the evolution law of the
vertical additional force of deep shafts under the effect of hydrophobic consolidation of the
bottom aquifer of thick alluviums. At the same time, revealing the permeability law of the
bottom aquifer is the basis for studying many coal mine engineering and geological safety
issues [10]. For example, the use of bottom aquifer hydrophobicity depressurization to
prevent water and sand surges in near-thick alluvium mining and grouting to control mine
sand disasters. All of these situations require knowledge of the permeability characteristics
of the aquifer in advance.

Accordingly, many scholars at home and abroad have carried out a vast amount of
research from different perspectives. In pore media permeability research, the variation of
permeability with stress levels has always been of concern [11,12]. Research on different
samples shows that the confining pressure (σr) has an obvious influence on the kv of the
medium. Guo Hong [13] and Li Ping [14] conducted triaxial permeability tests on saturated
undisturbed loess and reshaped loess, with an σr ranging from 0.1 to 0.4 MPa, and found
that their kv decreased with increasing consolidation pressure, controlled dry density, and
consolidation degree. The kv under single loading was significantly lower than that under
step-by-step loading. Zoback [15] and Terzaghi [16] found, through tests, that with an
increase in the σr, the stress shared by the solid skeleton of the sample is obviously greater
than that borne by the pore water, leading to compaction of the sample pores and a decrease
in the kv. Ameta [17] and Sällfors [18] studied the permeability of bentonite under different
pressures and found that the coefficient of permeability also decreases with an increasing
σr. Wei Linyi [19] found through permeability tests of compacted clay under different axial
strains that the relative magnitude of the current confining pressure and preconsolidation
pressure of the sample determined the deformation patterns as well as the permeability
change. Different pore structures and particle gradations have a great influence on the
kv [20–22]. Clement [23] investigated the relationship between the type of pore distribution
and the kv under different consolidation stresses by means of mercury injection testing.
The study of Kong Lingwei [24] also found that the kv does not change much when the
content of fine particles in the sandy soil is less than 5%. When the fine particle content is
between 5% and 10%, the kv sharply decreases with an increasing fine particle content. In
contrast, the coefficient of permeability of sandy soils tends to be relatively stable when
the fine particle content is greater than 25%. Hazen [25] proposed an empirical formula for



Appl. Sci. 2023, 13, 11599 3 of 26

the coefficient of permeability of soils: k = Cd2
10. In regard to the deep soil mechanics test,

domestic scholars such as Wang Yansen [26,27], Chen Guoqing [1], Li Wenping [28] and Ma
Jinrong [29] have carried out quite effective research on the mechanical characteristics of
the consolidation of deep clay under high stress, but research on the nonlinear permeability
characteristics of soil under high stress is still in its initial stage [30]. There are few reports
on deep soil mechanics in foreign countries because of the energy policy and natural
endowment of coal seam. Because of the characteristics of high total stress and high water
pressure, the bottom aquifers of thick alluviums with a permeable path have been subjected
to long geological sedimentation during their formation. A high σr causes soil particles to
break, thus changing the gradation of soil and changing its kv.

To sum up, studying the nonlinear permeability characteristics of bottom aquifers of
thick alluviums under high stress provide an indispensable theoretical basis for revealing
the deformation mechanism of hydrophobic settlement in deep alluviums and the mecha-
nism and prevention of indirect shaft mining fractures after mines are put into production.
In view of the above, in this paper, against the background of shaft damage caused by the
hydrophobic consolidation and settlement of high-confined aquifers at the bottom of thick
alluviums, a joint HPLTC-HPPNP experimental study was carried out using an environ-
mental triaxial automated system (hereafter referred to as “ETAS”). After high-pressure
consolidation, the kv under a constant σr was directly measured, and the nonlinear perme-
ability characteristics of deep clayey sand were analyzed by determining the relationships
amongst the consolidation pressure, hydraulic gradient, loading–unloading methods and
permeability coefficient. Additionally, the pore structure characteristics of clayey sand were
explored by low-field NMR technology, and the nonlinear permeability mechanism of deep
clayey sand is discussed. The research results are expected to be beneficial for the study of
the hydrophobic consolidation characteristics of confined aquifers and to make up for the
shortcomings of deep soil mechanics in the study of permeability characteristics.

2. Long-Term Consolidation Permeability Test of Bottom Aquifers under High Stress
2.1. Sample Preparation

The test materials were selected from the bottom of deep strata of the same depth of
approximately 540~580 m underground near the Guotun Coal Mine shaft in Yuncheng,
Shandong Province, as shown in Figure 1. The bottom aquifer soil sample was identified as
clayey sand, and its natural physical indexes are shown in Table 1.
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Figure 1. Location map of the coal mine and geological histogram of the sampling points. 

Table 1. Index properties of the clayey sand. 

Moisture Content 
/% 

Proportion Density 
/g·cm–3 

Porosity 
/% 

Modulus of Compression 
/MPa 

12.02 2.625 2.05 30.47 5.02 

The mineral constituents of the clayey sand were quantitatively analyzed based on 
the K-value method using an X-ray diffractometer. The analysis showed that the mineral 
composition of the clayey sand at the bottom of Guotun Coal Mine contained more quartz, 
followed by montmorillonite (accounting for 15.38%), with some illite, kaolin, an il-
lite/smectite mixed layer, calcite and small amounts of chlorite, feldspar, gypsum and 
other minerals. The basic physical indexes and mineral compositions obtained above are 
similar to the existing geological data of the deep loose layers in East China and the 
Huanghuai area of China. 

The preparation of clayey sand samples followed China’s national standard geotech-
nical test method [31]. First, the initial wet weight of the original soil samples was meas-
ured by taking representative samples from the coal mine coring site, and the initial mois-
ture content of the original soil samples was determined after drying in the laboratory. 
According to the requirement of a 10% water content, the test soil was evenly mixed, and 
after standing in a sealed container for 24 h to ensure that the water content in the soil was 
uniform, according to the test scheme, five consolidation pressures (1, 2, 4, 6 and 8 MPa) 
were used to prepare reshaped clayey sand samples with a standard cylindrical sample 
size of 𝜙50 × 100 mm. In order to show that undisturbed soil samples have a certain struc-
ture after long-term consolidation [26], reshaped clayey sand samples were consolidated 
for 15 days under five consolidation pressures, and the samples formed by long-term con-
solidation under high stress are shown in Figure 2. 

Figure 1. Location map of the coal mine and geological histogram of the sampling points.
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Table 1. Index properties of the clayey sand.

Moisture Content/% Proportion Density/g·cm−3 Porosity/% Modulus of Compression/MPa

12.02 2.625 2.05 30.47 5.02

The mineral constituents of the clayey sand were quantitatively analyzed based on
the K-value method using an X-ray diffractometer. The analysis showed that the min-
eral composition of the clayey sand at the bottom of Guotun Coal Mine contained more
quartz, followed by montmorillonite (accounting for 15.38%), with some illite, kaolin, an
illite/smectite mixed layer, calcite and small amounts of chlorite, feldspar, gypsum and
other minerals. The basic physical indexes and mineral compositions obtained above
are similar to the existing geological data of the deep loose layers in East China and the
Huanghuai area of China.

The preparation of clayey sand samples followed China’s national standard geotechni-
cal test method [31]. First, the initial wet weight of the original soil samples was measured
by taking representative samples from the coal mine coring site, and the initial moisture
content of the original soil samples was determined after drying in the laboratory. Accord-
ing to the requirement of a 10% water content, the test soil was evenly mixed, and after
standing in a sealed container for 24 h to ensure that the water content in the soil was uni-
form, according to the test scheme, five consolidation pressures (1, 2, 4, 6 and 8 MPa) were
used to prepare reshaped clayey sand samples with a standard cylindrical sample size of
Φ50 · 100 mm. In order to show that undisturbed soil samples have a certain structure after
long-term consolidation [26], reshaped clayey sand samples were consolidated for 15 days
under five consolidation pressures, and the samples formed by long-term consolidation
under high stress are shown in Figure 2.
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Figure 2. Clayey sand sample.

2.2. Experimental Test System

Aiming at the mechanical characteristics of high overlying total stress and a high
water pressure in the permeability path of the bottom aquifer of thick alluviums, in order to
study the nonlinear seepage law of bottom aquifers under different stress levels, the ETAS
customized by Anhui Jianzhu University in the GDS Company of the United Kingdom was
selected to design high-stress and high-water-pressure permeability tests. The ETAS meets
the triaxial and permeability test requirements of deep soil under high-stress conditions,
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and it can provide a maximum σr of 32 MPa. As shown in Figure 3, the system can realize
back pressure saturation, B-value detection, standard triaxial test, stress path tests, K0
consolidation tests and other user-defined test schemes. The axial stepper motor realizes
the control of axial displacement. The pressure–volume controller realizes the control of
confining and back pressure and the measurement of drainage volume. The axial load
sensor measures the axial load. The pore pressure sensor realizes the measurement of pore
water pressure at the bottom of the sample.
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The ETAS can accurately control drainage, measure pore pressure and determine the
volume change in samples in the test according to the test requirements. Through the closed-
loop feedback calculation and control of PC, accurate automatic pressure compensation
and depressurization functions were realized. The experiment was controlled by GDSLAB
software (V2.6.0) to display real-time graphics and realize the visualization of the test
control and measurement parameters.

2.3. Experimental Program

In order to study the evolution law of the kv of the clayey sand in the bottom aquifer
of thick alluviums under different heads of confined water, σr, i and loading–unloading
methods, four sets of test schemes were formulated in this paper. To simulate the perme-
ability path characteristics of groundwater in the bottom aquifer draining towards the goaf
below it, downward permeability was adopted in the seepage test, and the σr of the test
adopted isotropic isobaric loading:

1. Direct loading permeability test of clayey sand with low-confined water.
2. Direct loading permeability test of clayey sand with high-confined water.
3. Fractional loading–unloading permeability test of clayey sand with low-confined water.
4. Fractional loading–unloading permeability test of clayey sand with high-confined water.

A nonlinear permeability test of clayey sand in the bottom aquifer of thick alluviums
was carried out by ETAS. The permeability test adopted the steady-state constant water
head method. During the test, the confining pressure (σr) and back pressure (water pressure
at the upper end of the sample, p1) of the test were controlled so as to remain unchanged,
and permeability tests with different osmotic pressures were conducted by adjusting the
base pressure (water pressure at the lower end of the sample, p2). During the test, the axial
load, axial strain, back volume, base volume and other data were measured by the sensing
system, and the test curve was recorded and drawn. The installation of the permeability
sample and the testing principles are shown in Figure 4.
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A direct loading permeability test of clayey sand with low- and high-confined water
was conducted at five σr levels, namely, 1, 2, 4, 6 and 8 MPa, with 2–4 samples at each σr
level. Schematic diagrams of the permeability test of low- and high-confined water are
shown in Figures 5 and 6, respectively.
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In the low-confined water seepage test, the p1 was 500 kPa and the p2 was 450, 400,
350, 300, 250 and 200 kPa in turn (that is, the ∆p was 50, 100, 150, 200, 250 and 300 kPa
in turn).
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In the permeability test of high-confined water, the p1 was σr/2 and the p2 was,
in turn, σr/2− 50 kPa, σr/2− 100 kPa, σr/2− 200 kPa, σr/2− 300 kPa, σr/2− 400 kPa,
σr/2− 500 kPa, σr/2− 600 kPa, σr/2− 700 kPa, σr/2− 800 kPa, σr/2− 900 kPa and σr/2−
1000 kPa (that is, the ∆p was 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 kPa
in turn).

In the process of the graded loading–unloading permeability test of clayey sand with
low- and high-confined water, a constant i was set for the same sample, while the σr was
increased step by step first and then reduced step by step according to the original path
after reaching the target σr. The initial σr of the sample was 1 MPa, with the maximum σr
being 8 MPa and the loading–unloading path of the sample σr being 1 MPa→ 2 MPa→
4 MPa→ 6 MPa→ 8 MPa→ 6 MPa→ 4 MPa→ 2 MPa→ 1 MPa.

Before officially starting the permeability test, the sample was saturated with a clay
saturator outside the ETAS triaxial cell, and then it was transferred to the triaxial cell of
the ETAS for vacuum saturation, carbon dioxide saturation, head saturation and back
pressure saturation in turn. After the B-value detection, it was ensured that the B-value
of the sample reached more than 0.95 (that is, the saturation reached more than 95%), and
then a permeable test was carried out after being loaded into the target σr for 24 h.

3. Analysis of the Penetration Test Results

In the process of the ETAS permeability test, by measuring the volume changes of the
fluid in the back pressure/volume controller and the base pressure/volume controller, the
total amount of pore water seepage, ∆Qi, through the upper and lower ends of the sample
during the infiltration time, t, was calculated (i = 1, 2, where 1 represents the upper end
and 2 represents the lower end). Then, the average seepage discharge, qi = ∆Qi/t, and
seepage velocity, vi = qi/A, in time t could be obtained, where A is the cross-sectional area
of the sample.

3.1. Analysis of Seepage Discharge Time Course Curves

The frequency of data acquisition was set to once every 10 s by GDSLAB software,
and the time–history curves of the seepage discharge of samples under a constant σr and
different ∆p levels are shown in Figures 7 and 8.
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Figure 7. Time history curves of low-confined water seepage discharge.
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Figure 8. Time history curves of high-confined water seepage discharge.

In Figures 7 and 8, it can be seen that when the σr was low, the time–history curves
of the seepage discharge of low- and high-confined water showed good linear correlation
under different ∆p values. Among them, the linear fitting degree of the seepage discharge
time–history curves of low-confined water seepage σr = 1 MPa and high-confined water
seepage σr ≤ 4 MPa were noted, with an σr above 0.99. When the σr was high, the linearity
of the time–history curve of the seepage discharge of low-confined water decreased, and
seepage did not occur gradually; however, the time–history curve of the seepage discharge
of high-confined water still had a good linear correlation. Because this seepage test adopted
the steady-state seepage method with a constant head, the p1 was constant during the
test, and the p2 was adjusted to a constant value at the beginning of the test, resulting in a
slight change in the volume of the base pressure/volume controller at the beginning of the
seepage test. Therefore, for the same seepage test, the absolute values of the intercept of
the time–history fitting curve of the ∆Q2 were all greater than the absolute values of the
intercept of the time–history fitting curve of the ∆Q1.

At the beginning of the permeability test, the back pressure/volume controller filled
water into the sample, and the back pressure/volume controller received the drainage from
the sample. The time–history curve of the ∆Q1 had a certain lag compared to that of the
∆Q2. When the σr was low, the ∆Q1 and ∆Q2 changed almost simultaneously, and the
time–history curves all showed a good linear relationship, while the time–history curve of
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the ∆Q1 had a small lag. With an increase in the σr, the time–history curves of the seepage
discharge of low- and high-confined water gradually fluctuated, and the ∆Q1 was less than
the ∆Q2, with the time–history curve of the ∆Q1 obviously lagging behind. The reason is
that the internal seepage discharge of the sample came from the joint action of the head
pressure difference and internal pore water dissipation. With permeability under a low σr,
the ∆Q1 and ∆Q2 were mainly affected by the head pressure difference, and the influence of
the internal pore water dissipation was negligible compared to the head pressure difference.
As the σr increased, the sample became compacted and the permeability decreased. The
changes in the head pressure difference and internal pore water dissipation on the ∆Q1 and
∆Q2 cannot be ignored. Among them, the ∆Q1 was mainly caused by the head pressure
difference that resulted from a drop of the p2, while the change in the ∆Q2 came from
the dissipation of the internal pore water near the lower end of the sample caused by a
sudden drop in the water head in the early stage. As the influence of the internal pore water
dissipation spread to the upper end of the sample, the change in the ∆Q2 was gradually
influenced by the head pressure difference.

3.2. Analysis of the Evolution Pattern of the Permeability Coefficient (kv ) with Time

The kv can be calculated according to the following steps [32]: After the consolidation
test was completed, several groups of permeability tests with different osmotic pressure
differences (∆pi) (i = 1, 2, . . .) were set under the condition of keeping a certain σr unchanged.
Then, the test data under a certain ∆pi were divided into N sections according to 10 min,
and the seepage discharge increment, ∆Q, and corresponding seepage velocity, v, in this
time period were calculated. According to the ∆pi of this stage and the height of the soil
sample, H, the hydraulic gradient was calculated as ∆pi/(γwH), where γw is the bulk
density of water. Then, Darcy’s law was used to calculate the permeability coefficient,
kvi,j = γw H∆Q/At∆pi, in the j−th period of N periods under a certain ∆pi. Following this,
the obtained kvi,j was analyzed. The principle is as follows: Write the calculated values of
kvi,j in N time periods in the form of kvi,j = B× 10−n, select more than four results whose
difference between the maximum and minimum B-values of the same power n is not more
than 2.0, take the average value as the kvi,j under the ∆pi of this level, and then take the
average value of kvi,j under the ∆pi of all levels as the kvi,j corresponding to the stable
porosity ratio when the σr of a certain level is constant.

The clayey sand was subjected to permeability tests at a certain σr for 1~3 h. The
osmotic pressure differences (∆p) were uniformly 200 kPa, and the relevant test parameters
and results after the seepage stability are shown in Table 2.

Table 2. Test parameters and results after permeation stabilization.

Pressure Bearing
Type

Confining
Pressure (σr)

/MPa

Back Pressure
(p1)/kPa

Back Pressure
(p2)/kPa

Hydraulic
Gradient

Permeability
Coefficient
/(10−8 cm/s)

Low-confined
water

1 500 300 208.7 208.68
2 500 300 214.3 1.26
4 500 300 212.3 0.53
6 500 300 210.7 0.35
8 500 300 216.2 Impermeable

High-confined
water

1 500 300 208.7 208.69
2 1000 800 206.2 8.05
4 2000 1800 212.7 3.47
6 3000 2800 210.5 0.21
8 4000 3800 216.2 0.13

The variation of the permeability coefficient with time for clayey sand during the
permeability of low- and high-confined water is shown in Figures 9 and 10, respectively.
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Figure 9. Curves of the low-confined water permeability coefficient with time under different 𝜎𝑟 
values. 
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Figure 9. Curves of the low-confined water permeability coefficient with time under different
σr values.
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Figure 10. Curves of the high-confined water permeability coefficient with time under different 𝜎𝑟 
values. 
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der different 𝜎𝑟  values. However, the permeability coefficient (𝑘௩ଵ)  calculated by the Δ𝑄ଵ gradually increased and tended to become stable with increasing time under differ-
ent 𝜎𝑟 values. It is inferred that the hydrophobic effect of the sample in the early stage of 
the permeability test was greater than that of osmotic pressure differences, and the hydro-
phobic effect was almost over in the middle and late stages of the test, only affected by the 
osmotic pressure differences. 

The Δ𝑄ଶ was first influenced by the hydrophobic effect, and when the hydrophobic 
effect and osmotic pressure differences gradually affected the Δ𝑄ଵ, the seepage path of 
the whole sample gradually opened, while the 𝑘௩ଵ kept increasing and tended to be sta-
ble, which could also be obtained from the seepage discharge time–history curve. Because 
the clayey sand in the bottom aquifer had a fine and clay particle content of 6.6% with a 
particle size of less than 0.075 mm, the 𝑘௩ଵ could not be rapidly increased to the maxi-
mum value, but gradually increased and then stabilized under the dynamic balance of the 
hydrophobic effect and osmotic pressure difference. 

Figure 10. Cont.



Appl. Sci. 2023, 13, 11599 13 of 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 28 
 

 

The combined effect of head 
pressure difference and pore 

water dissipation

Head pressure difference effect

0 10 20 30 40 50 60
0

5

10

15

20

25

30

0 4 8 12 16 20
5

10

15

20

25

30

 Calculated from ΔQ1

 Calculated from ΔQ2

Penetrating time t/min

Pe
rm

ea
bi

lit
y 

co
ef

fic
ie

nt
/（

10
−8

cm
/s）

 

 

Pe
rm

ea
bi

lit
y 

co
ef

fic
ie

nt
/（

10
−8

cm
/s）

Penetrating time t/min

 
(a) 𝜎௥ = 2 MPa 

The combined effect of head 
pressure difference and pore 

water dissipation

Head pressure difference effect

0 10 20 30 40 50 60
0

3

6

9

12

15

0 2 4 6 8 10
0

3

6

9

12

15

 Calculated from ΔQ1

 Calculated from ΔQ2

Penetrating time t/min

 
Pe

rm
ea

bi
lit

y 
co

ef
fic

ie
nt

/（
10

−8
cm

/s）

 

 

Pe
rm

ea
bi

lit
y 

co
ef

fic
ie

nt
/（

10
−8

cm
/s
）

Penetrating time t/min

 
(b) σ୰ = 4 MPa 

Figure 10. Curves of the high-confined water permeability coefficient with time under different 𝜎𝑟 
values. 

Comparing the curves of the permeability coefficient of low- or high-confined water 
of clayey sand with time under different 𝜎𝑟 values, it can be found that the permeability 
coefficient (𝑘௩ଶ) calculated from the Δ𝑄ଶ decreased gradually with increasing time un-
der different 𝜎𝑟  values. However, the permeability coefficient (𝑘௩ଵ)  calculated by the Δ𝑄ଵ gradually increased and tended to become stable with increasing time under differ-
ent 𝜎𝑟 values. It is inferred that the hydrophobic effect of the sample in the early stage of 
the permeability test was greater than that of osmotic pressure differences, and the hydro-
phobic effect was almost over in the middle and late stages of the test, only affected by the 
osmotic pressure differences. 

The Δ𝑄ଶ was first influenced by the hydrophobic effect, and when the hydrophobic 
effect and osmotic pressure differences gradually affected the Δ𝑄ଵ, the seepage path of 
the whole sample gradually opened, while the 𝑘௩ଵ kept increasing and tended to be sta-
ble, which could also be obtained from the seepage discharge time–history curve. Because 
the clayey sand in the bottom aquifer had a fine and clay particle content of 6.6% with a 
particle size of less than 0.075 mm, the 𝑘௩ଵ could not be rapidly increased to the maxi-
mum value, but gradually increased and then stabilized under the dynamic balance of the 
hydrophobic effect and osmotic pressure difference. 
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σr values.

Comparing the curves of the permeability coefficient of low- or high-confined water
of clayey sand with time under different σr values, it can be found that the permeability
coefficient (kv2) calculated from the ∆Q2 decreased gradually with increasing time under
different σr values. However, the permeability coefficient (kv1) calculated by the ∆Q1
gradually increased and tended to become stable with increasing time under different σr
values. It is inferred that the hydrophobic effect of the sample in the early stage of the
permeability test was greater than that of osmotic pressure differences, and the hydrophobic
effect was almost over in the middle and late stages of the test, only affected by the osmotic
pressure differences.

The ∆Q2 was first influenced by the hydrophobic effect, and when the hydrophobic
effect and osmotic pressure differences gradually affected the ∆Q1, the seepage path of
the whole sample gradually opened, while the kv1 kept increasing and tended to be stable,
which could also be obtained from the seepage discharge time–history curve. Because the
clayey sand in the bottom aquifer had a fine and clay particle content of 6.6% with a particle
size of less than 0.075 mm, the kv1 could not be rapidly increased to the maximum value,
but gradually increased and then stabilized under the dynamic balance of the hydrophobic
effect and osmotic pressure difference.

3.3. Analysis of the Influence of Confining Pressure on the Permeability Coefficient, kv

3.3.1. Direct Loading to Constant Confining Pressure

The fitting curve between the kv of low- and high-confined water and the σr, after
the clayey sand was stabilized under different σr values and the same osmotic pressure
differences, is shown in Figure 11. From the diagram analysis, it can be seen that the kv
of clayey sand decreased nonlinearly with an increasing σr, regardless of whether in a
low- or high-confined water state. When the σr was 1 MPa, the kv was obviously greater
than that under a high σr. According to preliminary analysis, this phenomenon is related
to the structural characteristics of the internal permeability pores of the sample, and this
phenomenon will be analyzed and discussed by using the low-field NMR testing system
later, so it will not be repeated here.
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Figure 11. Fitted curves of the kv and σr .

With an increase in the σr, the pore structure in the sample changed, and the seepage
pore gradually narrowed and closed, leading to a decrease in its permeability coefficient.
In order to show the nonlinear decreasing relationship of the permeability coefficient of
the clayey sand sample with an increasing σr, the power function was used to fit the
test results:

kv = k0σr
−α (1)

where k0 is the initial permeability coefficient, α is the coefficient, and σr is the
confining pressure.

According to the test data and Formula (1), the fitting curves and equations of the
relationship between the σr and permeability coefficient of low- and high-confined water,
as shown in Figure 11, could be obtained, and the fitting correlation coefficients, R2, were
all above 0.9, which shows that the power function reliably fits the relationship between
the σr and permeability coefficient of clayey sand.

3.3.2. Loading and Unloading of the σr Step by Step

When the osmotic pressure difference of the clayey sand sample was constant at 200
kPa, the same sample was subjected to progressive loading and unloading permeability
tests, and the fitting curves of the permeability coefficients of the unloading path and the
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unloading path changing with the σr during the loading–unloading permeability test were
obtained, as shown in Figure 12, while the corresponding test parameters and results are
shown in Table 3.
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Figure 12. Relationship curves between the permeability coefficient and σr in the loading–unloading
process.

Table 3. Relationships between the permeability coefficient (10−8 cm/s) and hydraulic gradient in
loading–unloading process.

Confining
Pressure
(σr )/MPa

Low-Confined Water Infiltration High-Confined Water Infiltration

iload kload iunload kunload iload kload iunload kunload

1 208.7 208.7 214.6 25.21 208.7 208.7 214.6 25.21
2 210.2 11.45 215.2 2.322 210.2 10.45 214.9 4.425
4 213.2 0.641 215.8 0.315 212.8 1.054 215.6 0.525
6 215.4 0.324 216.2 0.183 214.9 0.324 215.9 0.211
8 216.7 0.114 216.7 0.114 216.2 0.130 216.2 0.130

As can be seen from Figure 12 and Table 3, when the σr increased from 1 to 8 MPa,
the permeability coefficient first continuously decreased and then continuously increased
when the σr was gradually unloaded from 8 to 1 MPa, but its permeability coefficient could
not be restored to the initial value. That is, under the same σr, the permeability coefficient
during loading was greater than that during unloading. The reason is that the clayey sand
sample underwent shrinkage deformation with an increasing σr, one part of which could
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be recovered and the other part could not. The recoverable shrinkage deformation was
mainly caused by the change in pore volume between sand particles. The pores were
compressed with an increase in the σr and restored with a decrease in the σr. Meanwhile,
the irrecoverable shrinkage deformation was caused by breakage of the structural strength
formed by sand particles and clay particle rearrangement.

Through the power function fitting curve in Figure 12, it can be found that the loading–
unloading permeability coefficient of clayey sand was basically consistent with the fitting
curve of the σr in low- and high-confined water permeability, but under the same σr, the
recovery degree of the two confined conditions was different. In view of this phenomenon,
Zhang Gailing [30] defined the recovery ratio of the loading–unloading permeability
coefficient under different σr values: Recovery ratio = kunload/kload, and the calculation
results are shown in Table 4.

Table 4. Recovery ratio (kunload/kload ) of the loading–unloading permeability coefficient of the
clayey sand samples.

Low-Confined Water Infiltration High-Confined Water Infiltration

Confining
Pressure (σr )/MPa

Recovery Ratio
kunload/kload

Confining Pressure
(σr )/MPa

Recovery Ratio
kunload/kload

1 0.12 1 0.12
2 0.20 2 0.42
4 0.49 4 0.50
6 0.56 6 0.65
8 1 8 1

It can be seen from Table 4 that the recovery ratio of the permeability coefficient of
high-confined water was greater than that of low-confined water, and the recovery ratio of
the permeability coefficient increased with an increasing σr.

3.4. The Influence Analysis of Hydraulic Gradient “i” on the Permeability Coefficient, kv

When σr values of 2 and 4 MPa were applied to the clayey sand samples, respectively,
permeability tests with different hydraulic gradients were performed while keeping their
σr constant, and the relationship curve between kv and i under the same σr could be
obtained, as shown in Figure 13. The curve shows that the variation law of low- and high-σr
permeability coefficients with an increasing “i” was completely different.
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Figure 13. Relationship between the permeability coefficient and hydraulic gradient of clayey sand.

The permeability of clayey sand is different from that of sandy and clayey soil, and
its kv is simultaneously affected by the seepage characteristics of sandy and clayey soil.
The seepage of sandy soil obeys Darcy’s law. Because of the viscous resistance of adsorbed
water, the pore water can seep only if the i is greater than the initial hydraulic gradient.
The infiltration process of clayey sand in the bottom aquifer of a thick alluvium is influ-
enced by the initial hydraulic gradient of clayey soil, the non-Darcy infiltration of clayey
soil, the Darcy infiltration of sandy soil and the drainage effect of clayey sand samples;
each factor has a different influence on the permeability characteristics under different
infiltration conditions.

The concrete manifestations were as follows: When the σr was low, clayey sand
was dominated by Darcy infiltration of sandy soil, and when the head pressure differ-
ence was 50 kPa, there was a smooth seepage channel inside the sample. With the in-
crease in i, the effective back pressure (σrp1 , its value calculation meets σrp1 = σr − p1)
remained unchanged, while the effective base pressure (σrp2 , its value calculation meets
σrp2 = σr − p2) kept increasing, resulting in a decrease in the size of the whole seepage
channel and a gradual decrease in the kv, as shown in Figure 13a,b. When the σr was high,
the seepage process was influenced by the non-Darcy seepage of clayey soil and the Darcy
seepage of sandy soil. Under a high σr, the pores were compressed, the soil skeleton was
closed, and the viscous particles blocked the seepage channel. When the head pressure
difference was 50 kPa, there was almost no smooth seepage channel in the sample. At this
time, the changes in the ∆Q1 and ∆Q2 were mainly due to the drainage effect caused by a
decrease in the p2. As i increased to the initial hydraulic gradient, during the transition from
non-Darcy seepage of clayey soil to Darcy seepage of sandy soil, the kv gradually increased.
Then, with a continuous increase in the σrp2 , the size of the whole seepage channel of the
sample decreased, while the kv also gradually decreased; that is, the kv gradually increased
and then decreased with i, as shown in Figure 13c,d. This law is also reflected by changes
in the ∆Q1 and ∆Q2. When the σr was low, the changes in the ∆Q1 and ∆Q2 were highly
consistent and synchronized, basically meeting Darcy’s law. When the σr was high, changes
in the ∆Q1 were obviously delayed compared to changes in the ∆Q2, and then tended to
be consistent, having the permeability characteristics of non-Darcy infiltration of clayey
soil and Darcy infiltration of sandy soil.

3.5. Applicability Analysis and Parameter Determination of the Bottom Aquifer Permeability Model

The permeability coefficient of clayey sand in the bottom aquifer of thick alluviums
decreased nonlinearly with a decreasing void ratio during the consolidation process. In
response to the nonlinear relationship between the permeability coefficient and void ratio
of cohesive soil, scholars at home and abroad have conducted a vast amount of research,
mainly including the following:



Appl. Sci. 2023, 13, 11599 18 of 26

(1) The lg[kv(1 + e)]− lge permeability model.

Taylor [33] obtained the expression of the permeability coefficient of sand through a
sand permeability test:

kv =
Ce3

1 + e
, (2)

Samarasinghe [34] proposed the e− kv relationship model for general normal consoli-
dated clay according to Formula (2):

kv =
Cen

1 + e
, (3)

That is, lg[kv(1 + e)] = lgC + nlge, where C represents the reference permeability
coefficient reflecting the properties of the soil and n represents the soil parameter.

(2) The e− lgkv permeability model.

e = Cklg(kv/kv0) + e0 = Cklgkv + e′0, (4)

where Ck is the permeability index; e0 and kv0 are the initial void ratio and the initial
permeability coefficient, respectively; e′0 is the pore ratio corresponding to the unit vertical
permeability coefficient.

Formula (4) is the most commonly used model to express nonlinear changes of the per-
meability coefficient with the void ratio. Mesri [35] pointed out that e− lgkv represented by
Formula (4), has a linear relationship, which is applicable to common clays in engineering.

(3) The lgkv − lge permeability model.

Mesri [36] found, through research, that if the variation range of the clay pore ratio
is too large, the applicability of Formula (4) is poor, and then put forward an improved
lgkv − lge model:

kv = BeA, (5)

That is, lgkv = Alge + lgB, where A and B are the parameters of clay permeability.

(4) The lgkv − lg(1 + e) permeability model.

Xie Kanghe [37] once proposed the following nonlinear permeability model:

kv = kv0

(
1+e
1+e0

)2
. Then, the model was improved and a new model regarding the perme-

ability coefficient and void ratio was put forward [38]:

kv = kv0

(
1 + e
1 + e0

)α

, (6)

That is, lgkv = αlg
(

1+e
1+e0

)
+ lgkv0 = αlg(1 + e) + β, where α and β are the soil param-

eters, which can be obtained by analyzing test data and fitting curves.
Through the regression fitting of the nonlinear relationship between four common

pore ratios and permeability coefficients to clayey sand permeability test data, the statistical
regression values and corresponding R2 parameters for the four nonlinear infiltration
models’ parameters were obtained, and the results are shown in Table 5.

Table 5. Four permeability model parameters and related parameters of clayey sand.

Permeability Type

Permeability Model

lg[kv(1+e)]−lge e−lgkv lgkv−lge lgkv−lg(1+e)

n C R2 Ck e′0 R2 A B R2 α β R2

Low-confined water 14.24 0.034 0.9757 0.0656 0.8557 0.9595 13.951 0.0187 0.9746 47.899 −14.374 0.9650
High-confined water 13.934 0.028 0.9888 0.0679 0.9004 0.9708 13.645 0.0154 0.9881 46.813 −14.174 0.9769
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From Table 5, it can be seen that all four permeability models had relatively high fitting
degrees for the clayey sand in the bottom aquifer, with the fitting correlation coefficient,
R2, exceeding 0.95. From the perspective of engineering application, all four nonlinear
permeability models are suitable for the nonlinear permeability of clayey sand in the bottom
aquifer in the Juye mining area. The fitting degree of Model lg[kv(1 + e)]− lg e was the
highest, and the fitting correlation coefficient, R2, of the high-confined water permeability
model was slightly higher than that of the low-confined water permeability model.

4. Pore Structure Characteristics and Nonlinear Permeability Mechanism of Clayey Sand

The pore water type and pore structure distribution of clayey sand under different
stress levels determine its macro-mechanical and hydraulic characteristics. In order to
reveal the nonlinear permeability mechanism of clayey sand from the aspect of pore
structure characteristics, low-field NMR technology was selected to study the pore structure
characteristics of clayey sand in detail.

The MesoMR23-060V-I low-field nuclear magnetic resonance testing system (NMR)
was adopted for the nuclear magnetic resonance test. The physical object of the system is
shown in Figure 14, and the main technical parameters are shown in Table 6.
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Table 6. Low-field NMR test system parameters.

Serial Number Projects Parameters

1 Main magnetic field strength/T 0.5
2 Magnetic field uniformity/ppm ≤20
3 Magnetic field stability/Hz·Hour−1 ≤300
4 Radio frequency pulse frequency/MHz 1.0~30
5 Radio frequency power/W 300
6 Maximum sampling pulse width/KHz 2000

Low-field NMR uses an external magnetic field to calibrate the hydrogen magnetic
moment, so that the hydrogen-containing fluid generates a dipole moment, and the pore
structure volume filled with the fluid is measured according to the proportional relationship
between the amplitude of the dipole moment and the number of hydrogen atoms. The
time evolution of the dipole moment can be decomposed into the decay time spectrum,
that is, longitudinal T1 and transverse T2 relaxation time distribution. In this paper, the T2
relaxation measurement was used to characterize the pore types. T2 relaxation in NMR
mainly adopts surface relaxation of the water–soil interface, which is a function of the pore
surface volume ratio:

1
T2

= ρ2
S
V

, (7)
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where T2 is the transverse relaxation time caused by surface interaction, ρ2 is the transverse
relaxation strength constant, and S/V is the surface–volume ratio related to pore size.

Because of the high S/V value of small pores, Formula (7) shows that hydrogen pro-
tons in small pores relax faster than those in large pores [39,40]. Therefore, the distribution
of the T2 in the sample reflects the distribution of pore size, and the relaxation time of the
smallest pore is the shortest and that of the largest pore is the longest.

4.1. Clayey Sand T2 Spectrum Distribution Law

According to the relaxation principle of low-field NMR, water in small pores experi-
ences greater surface relaxation, so it relaxes faster than water in large pores. Therefore,
the T2 distribution is similar to the pore size distribution, in which each relaxation time
corresponds to the pore size: Larger pores correspond to longer relaxation times and
smaller pores correspond to shorter relaxation times [40]. Bai Songtao [41] proved that the
pore structure corresponds to the T2 spectrum distribution one by one through a mercury
injection test; that is, the larger the pore throat diameter, the greater the corresponding
T2 value.

T2 spectrum distribution features include the number, size, and location of T2 spectrum
peaks, among which different spectrum peaks reflect various types of seepage paths of
clayey sand. In order to quantitatively analyze the pore structure of clayey sand under
different stress states, after the permeability test, T2 spectrum distribution characteristic
curves of saturated clayey sand under different stress states were obtained using low-field
NMR technology and reflecting the pore structure with the T2 value of pore liquid water,
as shown in Figure 15.
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Figure 15. Distribution of the ‘T2’ spectrum of clayey sand under different stress conditions.

As can be seen from Figure 15, the T2 spectrum distribution law of clayey sand was
almost the same under different stress states, basically of the bispectrum peak type. The
first spectrum peak was located in the range of transverse relaxation time, T2 = 0.01~5 ms,
and the second spectrum peak was located in the range of transverse relaxation time,
T2 = 10~100 ms. The signal amount of the first spectrum peak was large, so it can be
assumed that there are a large number of tiny pores in clayey sand. Because clayey sand
contains more fine clay particles and large specific surface areas, there are more tiny pores in
clayey sand. The first peak is the main spectrum peak, the second peak is the subspectrum
peak, with almost no nuclear magnetic signal between the two peaks, which indicates
that the connectivity between the two pores was poor. With an increase in σr, the signal
intensity and interval width of the first and second spectrum peaks decreased, which shows
the closure of seepage pore and the decrease in channels. Specifically, in the interval of
transverse relaxation time T2 = 0.01~5 ms, the pore structure under different stress states
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was almost the same, but with an increase in σr, the peak point of the spectrum peak
in the interval decreased continuously, indicating that the number of adsorption pores
in clayey sand decreased. At the same time, the end point value at the left end of the
interval remained almost unchanged, while the end point value at the right end decreased,
indicating that the pore size of the clayey sand adsorption hole decreased. In the range of
T2 = 5~10 ms, the number of pores was zero and the connectivity between the pores was
poor. In the range of T2 = 10~100 ms, the signal intensity of the T2 spectrum under different
stress states was small, which indicates that the number of permeable macropores in clayey
sand is small and the permeability is poor. With an increase in the σr, the peak value and
width of the spectrum in this range obviously decreased. When the σr increased to 4 MPa,
the peak value of the spectrum almost dropped to zero, while a large number of seepage
pores in the sample closed, and the permeability plummeted. The variation law of pores
with an σr was the same as that of kv, which shows that analyzing the permeability law of
porous media by the T2 spectrum distribution curve of NMR technology is highly reliable.

According to the T2 spectrum curve cluster of clayey sand in different stress states in
Figure 15, the T2 spectrum area was analyzed [42], as shown in Table 7.

Table 7. The “T2” spectrum area of clayey sand under different stress conditions.

Confining Pressure
(σr)/MPa

Total Peak
Area

First Peak
Area

First Peak
Percentage

/%

Second
Peak Area

Second Peak
Percentage

/%

1 5703.32 5304.09 93.00 399.23 7.00
2 4749.73 4546.92 95.73 202.81 4.27
4 4049.60 3911.91 96.60 137.69 3.40
6 3248.41 3170.77 97.61 77.64 2.39
8 2624.56 2585.98 98.53 38.58 1.47

It can be seen from Table 7 that with an increase in the σr, the total water content of
clayey sand and the pore water content corresponding to the first and second peaks all
decreased rapidly, while the proportion of water content in the first peak increased. This
indicates that the pore type corresponding to the second peak controlled the permeability
of the sample during the increase in the σr.

4.2. Distribution Characteristics of the Pore Structure of Clayey Sand and Its Micro-Mechanism
of Permeability

Pores in porous media are usually composed of two different (double-pore) systems, in-
cluding primary and secondary pores. The primary pore system consists of micropores and
mesopores (<0.1 µm), while the secondary pore system includes macropores (>0.1 µm),
micro-fractures and cleat and natural fractures, forming a pipeline for large-flow fluid
transfer. Micropores and mesopores are also called adsorption pores, while macropores
are called permeability pores, and their permeability threshold is 0.1 µm. In view of this
phenomenon, Yao Yanbin [43–46] provided the corresponding relationship between the
transverse relaxation time, T2, and pore size, as shown in Table 8. Because the adsorption
pores were saturated with bound water, they could not be used as the seepage path of pore
water in the permeability test, which has little influence on the permeability of clayey sand,
while the permeability pores were saturated with free water, which could be used as the
seepage path in the permeability test. Thus, the size and number of permeability pores
determine the permeability of porous media.
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Table 8. Corresponding relationship between the transverse relaxation time, T2, and pore throat
diameter.

T2 Aperture ‘D’ Pore Types Pore Water Classifications

0.1~2.5 ms <0.1 µm Adsorption pore Adsorbed water
2.5~100 ms >0.1 µm Infiltration pore Capillary water

>100 ms - Crack Free water

Table 8 shows that different T2 intervals correspond to different pore types. The
interval of T2 = 0.1~2.5 ms corresponds to adsorption pores, a pore size of less than 0.1 µm,
and most pores being film-adsorbed water, which hardly permeates due to the strong
adsorption force on the particle surface. The T2 = 2.5~100 ms interval corresponds to the
seepage hole, a pore size greater than 1 µm, and capillary water being in the hole. This
part of water is only bound by capillaries and can permeate under the action of i, which is
the main part of permeability. In the T2 > 100 ms interval, there are cracks, and the pores
are free water, which has very little constraint and can very easily infiltrate. Therefore, the
smaller the pore size, the more difficult it is for pore water to eliminate the constraints and
infiltrate. During the infiltration process, cracks and pores infiltrate in turn, according to
the pore size, while the adsorbed water in the adsorption pores only decreases the thickness
of the adsorption film with increasing pore water pressure and does not infiltrate [47].

In addition, for clayey sand, the comprehensive proportion of adsorption and perme-
ability holes was larger than that of 97%, and the proportion of fissure pores was too small
to be ignored. To simplify the analysis, T2 = 2.5 ms was taken as the dividing line between
the adsorption holes (0.1~2.5 ms) and permeability holes (2.5~100 ms), and a curve of the
content of adsorbed water and capillary water in clayey sand changing with the σr could
be obtained, as shown in Figure 16.
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Figure 16. Fitting curve of the capillary water and adsorbed water content with the σr in clayey sand.

As can be seen from Figure 16, the capillary water and adsorbed water content de-
creased with an increasing σr but the reduction forms of the two were different. The
adsorbed water decreased in a linear relationship, while the capillary water decreased in
a power function form. After the σr increased to 2 MPa, almost all of the capillary water
was discharged, resulting in the capillary water content being less than 5% (the total water
content of 1 MPa was 30% of the initial water content), leaving only some adsorbed water
in the sample. At this time, the adsorbed water was mainly bound water, which has little
influence on water infiltration. Based on this, a seepage model of clayey sand could be
established, as shown in Figure 17.
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Pores in clayey sand and pore water play a decisive role in the seepage process.
Because the bound water near the surface of soil clay particles has shear strength (τf ), its
distribution decreases exponentially with the distance from the surface of clay particles.
Under a certain water head or consolidation stress, some bound water with a smaller τf is
in a flowing state, while some bound water is in a solid-like state. Therefore, only some of
the bound water is in a moving state in those pores filled with bound water, and that in the
pores where bound water can flow is called a seepage hole, and its diameter is called the
seepage diameter.

Regarding the whole process of clayey sand infiltration, when p < 2 MPa, free water
is dominant in soil pores, and the seepage fluid is mainly free and bound water. With an
increasing consolidation pressure, the free water in pores is gradually discharged, causing
pores to become smaller and the void ratio to change greatly, resulting in a great change in
the kv. When p > 4 MPa, the bound water in the soil is dominant, and the bound water
mainly seeps. When the head pressure difference exceeds the τf of bound water, it has
the nature of free water and participates in seepage. This part of bound water bears the
pore water pressure, and this effect gradually decreases with an increasing σr. Even if the
head pressure difference increases, the proportion of bound water that can overcome the
τf does not change much. At this time, the pores change little and the kv value tends to
become stable.

To sum up, according to the T2 spectrum distribution of clayey sand under different
stress states, we can not only quantitatively analyze the pore structure in soil, but also
judge the connectivity between pores. Moreover, the analysis results are consistent with
the conclusions of the ETAS permeability test. The content of capillary water in pores plays
a key role in the permeability of clayey sand, and its fitting relationship with the σr and
between the kv and σr all meet the power function relationship. Therefore, it is of great
significance to explore the nonlinear permeability law of clayey sand through the capillary
water distribution in pores to improve the existing permeability mechanism of porous
media under high stress.

5. Conclusions

Against the background of shaft damage caused by hydrophobic consolidation settle-
ment of the bottom aquifer of thick alluviums, a joint HPLTC-HPPNP test was carried out
based on the ETAS test system. The results revealed nonlinear permeability characteristics
and obtained the following main conclusions:
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(1) Under the actin of high stress, the kv of low- and high-confined water both decreased
with an increasing σr. The kv under an σr of 1 MPa was obviously greater than that
under a high σr. When the σr of the sample was greater than 4 MPa, the kv under low
and high pressure was less than 1 × 10–8 cm/s, and the relationship between the kv
and σr satisfied a power function.

(2) In the clayey sand permeability test, the seepage flow was affected by the head
pressure difference and the dissipation of pore water in the sample. During low- σr
infiltration, the seepage flow was mainly affected by the head pressure difference,
and upper and lower seepage occurred almost simultaneously, while the seepage
flow time–history curve showed a good linear relationship. When the σr was high,
changes in the ∆Q1 resulted from the head pressure difference, while early changes
in the ∆Q2 came from the dissipation of internal pore water near the lower end of
the sample caused by a sudden drop of the p2. As the influence of the internal pore
water dissipation spread to the upper end of the sample, the changes in the ∆Q2 were
gradually influenced by the head pressure difference.

(3) The variation law of low- and high- σr permeability coefficients with an increasing
i was completely different. When the σr was low, Darcy infiltration of sandy soil
was dominant, and with an increasing i , the σrp2 increased continuously, resulting
in a gradual decrease in sample kv . When the σr was high, the seepage process was
influenced by the non-Darcy seepage of clayey soil and the Darcy seepage of sandy
soil, and the kv increased first and decreased with an increasing i .

(4) Under different stress states, the T2 spectrum distribution law of clayey sand remained
almost the same, which was basically of the bispectrum peak type. The capillary
and adsorbed water content in the sample decreased with an increasing σr , but
then decreased in different ways. The adsorbed water decreased through a linear
relationship, while the capillary water decreased in a power function form. When the
σr increased to 2 MPa, almost all of the capillary water was discharged. The content
of the capillary water in the permeability hole plays a key role in the permeability of
clayey sand.

(5) The permeability characteristics of the bottom confined aquifer in the thick loose
layer directly affected the drainage process of the bottom aquifer and the hydraulic
replenishment rate of the surrounding aquifer. The initial drainage amount of the
bottom aquifer was mainly supplemented by the surrounding water, while the later
stage was mainly drained by pore water. Research has shown that the permeability
of deep confined aquifers is poor. In order to avoid additional vertical force acting
on the shaft caused by the consolidation of bottom aquifer drainage, it is necessary
to control the bottom aquifer drainage at the peripheral hydraulic supply stage, to
prevent closure of the permeability pore throat.
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