Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = micro-EDM milling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3907 KiB  
Article
Experimental Investigation of Al2O3 Nano-Powder-Mixed Dielectric in EDM-Assisted Micro-Milling
by Sharad Yadav, Deepak Agarwal, Anuj Kumar Sharma, Rabesh Kumar Singh, Saurabh Chauhan and Shalini Mohanty
Micromachines 2025, 16(7), 725; https://doi.org/10.3390/mi16070725 - 21 Jun 2025
Viewed by 1405
Abstract
This paper investigates the use of Al2O3 nano-powder-stirred micro-EDM process for generating micro-channels. This study focuses on the effect of critical machining process parameters, such as capacitance levels and nano-powder concentration, on the micro-channel fabrication performance in terms of TWR, [...] Read more.
This paper investigates the use of Al2O3 nano-powder-stirred micro-EDM process for generating micro-channels. This study focuses on the effect of critical machining process parameters, such as capacitance levels and nano-powder concentration, on the micro-channel fabrication performance in terms of TWR, MRR, depth, and width. A two-stage nested ANOVA is employed to understand the effect of powder concentration within different capacitance levels. The results show that the powder concentration significantly influences the system’s performance in conjunction with the capacitance. At low (100 pF) and high (1000 pF) capacitance, the addition of Al2O3 nano-powder increases the MRR, depth, and width but decreases TWR up to a concentration of 1.0 g/L. A desirability function analysis (DFA) tool identified the best overall performance from 14 experiments, revealing that 100 pF and 1 g/L yield the optimal outcomes. Full article
Show Figures

Figure 1

16 pages, 4365 KiB  
Article
Replication Study of Molded Micro-Textured Samples Made of Ultra-High Molecular Weight Polyethylene for Medical Applications
by Francesco Modica, Vito Basile, Rossella Surace and Irene Fassi
Micromachines 2023, 14(3), 523; https://doi.org/10.3390/mi14030523 - 24 Feb 2023
Cited by 5 | Viewed by 1904
Abstract
In articular joint implants, polymeric inserts are usually exploited for on-contact sliding surfaces to guarantee low friction and wear, a high load-bearing capacity, impact strength and stiffness, and biocompatibility. Surface micro-structuring can drastically reduce friction and wear by promoting hydrostatic friction due to [...] Read more.
In articular joint implants, polymeric inserts are usually exploited for on-contact sliding surfaces to guarantee low friction and wear, a high load-bearing capacity, impact strength and stiffness, and biocompatibility. Surface micro-structuring can drastically reduce friction and wear by promoting hydrostatic friction due to synovial fluid. Ultra-High Molecular Weight Polyethylene (UHMWPE) is a suitable material for these applications due to its strong chemical resistance, excellent resistance to stress, cracking, abrasion, and wear, and self-lubricating property. However, surface micro-texturing of UHMWPE is hardly achievable with the currently available processes. The present study investigates UHMWPE’s micro-textured surface replication capability via injection molding, comparing the results with the more easily processable High-Density Polyethylene (HDPE). Four different micro-texture cavities were designed and fabricated on a steel mold by micro-EDM milling, and used for the experimental campaign. Complete samples were fabricated with both materials. Then, the mold and samples were geometrically characterized, considering the dimensions of the features and the texture layout. The replication analysis showed that HDPE samples present geometrical errors that span from 1% to 9% resulting in an average error of 4.3%. In comparison, the UHMWPE samples display a higher variability, although still acceptable, with percentage errors ranging from 2% to 31% and an average error of 11.4%. Full article
(This article belongs to the Special Issue 5th World Congress on Micro and Nano Manufacturing (WCMNM2022))
Show Figures

Figure 1

11 pages, 12248 KiB  
Article
Micro-EDM Drilling/Milling as a Potential Technique for Fabrication of Bespoke Artificial Defects on Bearing Raceways
by Long Ye, Krishna Kumar Saxena, Jun Qian and Dominiek Reynaerts
Micromachines 2022, 13(3), 483; https://doi.org/10.3390/mi13030483 - 20 Mar 2022
Cited by 4 | Viewed by 2924
Abstract
The fabrication of bespoke artificial defects on bearing raceways helps in mimicking incipient faults during real application or for directly validating the diagnostic technology depending on their shapes and sizes. This is particularly useful when run-to-failure experiments are time-consuming and even difficult in [...] Read more.
The fabrication of bespoke artificial defects on bearing raceways helps in mimicking incipient faults during real application or for directly validating the diagnostic technology depending on their shapes and sizes. This is particularly useful when run-to-failure experiments are time-consuming and even difficult in some cases. However, there has been limited systematic research on the design and fabrication of artificial defects on bearing raceways, particularly for the purpose of accelerated testing. In this work, micro-EDM is put forward as a potential technique for the fabrication of artificial defects using drilling/milling mode. A methodology is developed, not only to achieve the full control of the dimension and distribution of defects on a bearing element, but also to qualitatively and quantitatively perform the efficient characterization of the defect surface. A linear regression model with the inclusion of two-way interactions based on an analysis of variance (ANOVA) is presented to optimally select the process parameters. The verification experiments show that this mathematical model obtains a good fit for approximately 80% of the observed data. Through a combination of optical microscopy and confocal microscopy, the morphology and topography of the artificial defects was measured and compared. To conclude, micro-EDM evidences its great potential in terms of machining efficiency, e.g., with an MRR of 0.060 mm3/min, TWR of 0.032 mm3/min and dimensional controllability, e.g., the standard deviation of pitting diameter and depth being 0.5 µm and 0.8 µm, respectively, to achieve a desirable feature shape for bearing defects. Full article
(This article belongs to the Special Issue Micro and Nano Manufacturing (WCMNM 2021))
Show Figures

Figure 1

35 pages, 9068 KiB  
Review
Electropolishing and Shaping of Micro-Scale Metallic Features
by Sana Zaki, Nan Zhang and Michael D. Gilchrist
Micromachines 2022, 13(3), 468; https://doi.org/10.3390/mi13030468 - 18 Mar 2022
Cited by 24 | Viewed by 12438
Abstract
Electropolishing (EP) is most widely used as a metal finishing process. It is a non-contact electrochemical process that can clean, passivate, deburr, brighten, and improve the biocompatibility of surfaces. However, there is clear potential for it to be used to shape and form [...] Read more.
Electropolishing (EP) is most widely used as a metal finishing process. It is a non-contact electrochemical process that can clean, passivate, deburr, brighten, and improve the biocompatibility of surfaces. However, there is clear potential for it to be used to shape and form the topology of micro-scale surface features, such as those found on the micro-applications of additively manufactured (AM) parts, transmission electron microscopy (TEM) samples, micro-electromechanical systems (MEMs), biomedical stents, and artificial implants. This review focuses on the fundamental principles of electrochemical polishing, the associated process parameters (voltage, current density, electrolytes, electrode gap, and time), and the increasing demand for using environmentally sustainable electrolytes and micro-scale applications. A summary of other micro-fabrication processes, including micro-milling, micro-electric discharge machining (EDM), laser polishing/ablation, lithography (LIGA), electrochemical etching (MacEtch), and reactive ion etching (RIE), are discussed and compared with EP. However, those processes have tool size, stress, wear, and structural integrity limitations for micro-structures. Hence, electropolishing offers two-fold benefits of material removal from the metal, resulting in a smooth and bright surface, along with the ability to shape/form micro-scale features, which makes the process particularly attractive for precision engineering applications.zx3. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Micro- and Nanotextured Polymer Surfaces)
Show Figures

Figure 1

17 pages, 8863 KiB  
Article
Deionized Water Electrochemical Machining Hybridized with Alumina Powder Polishing for Microcavity of M-333 Mold Steel
by Albert Wen-Jeng Hsue and Zih-Yuan Huang
Processes 2022, 10(1), 152; https://doi.org/10.3390/pr10010152 - 13 Jan 2022
Cited by 4 | Viewed by 2474
Abstract
An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel [...] Read more.
An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel as the mold material. It reveals that employing the 30 μm/min feed rate with 50 mA and 0.2 ms of pulse-width is suitable for DI-water electrochemical machining. The DI-water ECM process can achieve an excellent surface roughness at Ra 0.169 µm on a semispherical round cavity. Combining the ECM with hybrid polishing with the alumina powder can achieve a better profile for a much deeper cavity than pure electrolytic discharge machining. The hybrid ECM polishing can efficiently finish a micro square insert of 0.6 mm length at 64 μm depth. Such ECM milling can achieve an S-shaped microchannel of radius 1.0 mm and a slot of 1.0 × 0.5 mm2 with 110 μm depth, demonstrating its feasibility and the surface integrity with accurate profile and roughness of Ra 0.227 μm. This study provides a cost-effective scheme for micro mold fabrication with a conventional micro-EDM machine tool and an intuitive and convenient optional process. However, some micro-electrical discharges occurred due to the breakdown of insulation, which creates micro craters on the surface of the parts. Full article
(This article belongs to the Special Issue New Frontiers in Magnetic Polishing and Electrochemical Technology)
Show Figures

Figure 1

18 pages, 8276 KiB  
Article
Micro-Milling Process of Metals: A Comparison between Femtosecond Laser and EDM Techniques
by Luigi Calabrese, Martina Azzolini, Federico Bassi, Enrico Gallus, Sara Bocchi, Giancarlo Maccarini, Giuseppe Pellegrini and Chiara Ravasio
J. Manuf. Mater. Process. 2021, 5(4), 125; https://doi.org/10.3390/jmmp5040125 - 22 Nov 2021
Cited by 13 | Viewed by 4215
Abstract
Nowadays, micro-machining techniques are commonly used in several industrial fields, such as automotive, aerospace and medical. Different technologies are available, and the choice must be made considering many factors, such as the type of machining, the number of lots and the required accuracy [...] Read more.
Nowadays, micro-machining techniques are commonly used in several industrial fields, such as automotive, aerospace and medical. Different technologies are available, and the choice must be made considering many factors, such as the type of machining, the number of lots and the required accuracy specifications in terms of geometrical tolerances and surface finish. Lasers and electric discharge machining (EDM) are widely used to produce micro-components and are similarly unconventional thermal technologies. In general, a laser is particularly appreciated by the industry for the excellent machining speeds and for the possibility to machine essentially any type of materials. EDM, on the other hand, has a poor material removal rate (MRR) but can produce microparts on only electrically conductive workpieces, reaching high geometrical accuracy and realizing steep walls. The most common micro-application for both the technologies is drilling but they can make also milling operations. In this work, a comparison of femto-laser and EDM technologies was made focusing on micro-milling. Two features were selected to make the comparison: micro-channels and micro-pillars. The depth was varied on two levels for both features. As workpiece material, aluminum, stainless steel and titanium alloy were tested. Data regarding the process performance and the geometrical characteristics of the features were analyzed. The results obtained with the two technologies were compared. This work improves the knowledge of the micro-manufacturing processes and can help in the characterization of their capabilities. Full article
Show Figures

Figure 1

26 pages, 13128 KiB  
Article
An Investigation into Accumulative Difference Mechanism in Time and Space for Material Removal in Micro-EDM Milling
by Qi Jing, Yongbin Zhang, Lingbao Kong, Min Xu and Fang Ji
Micromachines 2021, 12(6), 711; https://doi.org/10.3390/mi12060711 - 17 Jun 2021
Cited by 8 | Viewed by 2808
Abstract
In micro-electrical discharge machining (micro-EDM) milling, the cross-section of the microgroove machine is frequently not an ideal rectangle. For instance, there are arc shapes on the bottom and corners, and the sidewall is not steep. The theoretical explanation for this phenomenon is still [...] Read more.
In micro-electrical discharge machining (micro-EDM) milling, the cross-section of the microgroove machine is frequently not an ideal rectangle. For instance, there are arc shapes on the bottom and corners, and the sidewall is not steep. The theoretical explanation for this phenomenon is still lacking. In addition to the tip discharge effect, the essential reason is that there is an accumulative difference in time and space during the shape change process of a tool electrode and the microstructure formation on a workpiece. The process parameters are critical influencing factors that determine this accumulative difference. Therefore, the accumulative difference mechanism in time and space is investigated in this paper, and then a theoretical model is developed to simulate the micro-EDM milling process with a straight-line single path. The simulation results for a cylindrical electrode at the two rotational speeds of 0 (nonrotating) and 300 rpm are compared, while the results for a cylindrical electrode and a square electrode at a rotation speed of 0 are also compared to verify that different process parameters generate accumulative differences in the time and space of material removal. Finally, micro-EDM milling experiments are carried out to verify the simulation model. The maximum mean relative deviation between the microgroove profiles of simulation results and those of experiments is 11.09%, and the profile shapes of simulations and experiments have a good consistency. A comparative experiment between a cylindrical electrode and a hollow electrode is also performed, which further verifies the mechanism revealed in the study. Furthermore, the cross-section profile of a microgroove can be effectively controlled by adjusting the process parameters when utilising these accumulative differences through fabricating a microgroove with a V-shaped cross-section by a square electrode and a microgroove with a semi-circular cross-section by a cylindrical electrode. This research provides theoretical guidance for solving the problems of the machining accuracy of detail features in micro-EDM milling, for instance, to machine a microgroove with an ideal rectangular cross-section. Full article
Show Figures

Figure 1

16 pages, 4601 KiB  
Article
Pulse-Type Influence on the Micro-EDM Milling Machinability of Si3N4–TiN Workpieces
by Valeria Marrocco, Francesco Modica, Vincenzo Bellantone, Valentina Medri and Irene Fassi
Micromachines 2020, 11(10), 932; https://doi.org/10.3390/mi11100932 - 13 Oct 2020
Cited by 27 | Viewed by 3431
Abstract
In this paper, the effect of the micro-electro discharge machining (EDM) milling machinability of Si3N4–TiN workpieces was investigated. The material removal rate (MRR) and tool wear rate (TWR) were analyzed in relation to discharge pulse types in order to [...] Read more.
In this paper, the effect of the micro-electro discharge machining (EDM) milling machinability of Si3N4–TiN workpieces was investigated. The material removal rate (MRR) and tool wear rate (TWR) were analyzed in relation to discharge pulse types in order to evaluate how the different pulse shapes impact on such micro-EDM performance indicators. Voltage and current pulse waveforms were acquired during micro-EDM trials, scheduled according to a Design of Experiment (DOE); then, a pulse discrimination algorithm was used to post-process the data off-line and discriminate the pulse types as short, arc, delayed, or normal. The analysis showed that, for the considered process parameter combinations, MRR was sensitive only to normal pulses, while the other pulse types had no remarkable effect on it. On the contrary, TWR was affected by normal pulses, but the occurrence of arcs and delayed pulses induced unexpected improvements in tool wear. Those results suggest that micro-EDM manufacturing of Si3N4–TiN workpiece is relevantly different from the micro-EDM process performed on metal workpieces such as steel. Additionally, the inspection of the Si3N4–TiN micro-EDM surface, performed by SEM and EDS analyses, showed the presence of re-solidified droplets and micro-cracks, which modified the chemical composition and the consequent surface quality of the machined micro-features. Full article
Show Figures

Figure 1

20 pages, 6397 KiB  
Article
Technical Model of Micro Electrical Discharge Machining (EDM) Milling Suitable for Bottom Grooved Micromixer Design Optimization
by Izidor Sabotin, Gianluca Tristo and Joško Valentinčič
Micromachines 2020, 11(6), 594; https://doi.org/10.3390/mi11060594 - 16 Jun 2020
Cited by 10 | Viewed by 4439
Abstract
In this paper, development of a technical model of micro Electrical Discharge Machining in milling configuration (EDM milling) is presented. The input to the model is a parametrically presented feature geometry and the output is a feature machining time. To model key factors [...] Read more.
In this paper, development of a technical model of micro Electrical Discharge Machining in milling configuration (EDM milling) is presented. The input to the model is a parametrically presented feature geometry and the output is a feature machining time. To model key factors influencing feature machining time, an experimental campaign by machining various microgrooves into corrosive resistant steel was executed. The following parameters were investigated: electrode dressing time, material removal rate, electrode wear, electrode wear control time and machining strategy. The technology data and knowledge base were constructed using data obtained experimentally. The model is applicable for groove-like features, commonly applied in bottom grooved micromixers (BGMs), with widths from 40 to 120 µm and depths up to 100 µm. The optimization of a BGM geometry is presented as a case study of the model usage. The mixing performances of various micromixer designs, compliant with micro EDM milling technology, were evaluated using computational fluid dynamics modelling. The results show that slanted groove micromixer is a favourable design to be implemented when micro EDM milling technology is applied. The presented technical model provides an efficient design optimization tool and, thus, aims to be used by a microfluidic design engineer. Full article
(This article belongs to the Special Issue Analysis, Design and Fabrication of Micromixers)
Show Figures

Graphical abstract

17 pages, 10961 KiB  
Article
Machinability and Energy Efficiency in Micro-EDM Milling of Zirconium Boride Reinforced with Silicon Carbide Fibers
by Mariangela Quarto, Giuliano Bissacco and Gianluca D’Urso
Materials 2019, 12(23), 3920; https://doi.org/10.3390/ma12233920 - 27 Nov 2019
Cited by 20 | Viewed by 2581
Abstract
Several types of advanced materials have been developed to be applied in many industrial application fields to satisfy the high performance required. Despite this, research and development of process suited to machine are still limited. Due to the high mechanical properties, advanced materials [...] Read more.
Several types of advanced materials have been developed to be applied in many industrial application fields to satisfy the high performance required. Despite this, research and development of process suited to machine are still limited. Due to the high mechanical properties, advanced materials are often considered as difficult to cut. For this reason, EDM (Electrical Discharge Machining) can be defined as a good option for the machining of micro components made of difficult to cut electrically conductive materials. This paper presents an investigation on the applicability of the EDM process to machine ZrB2 reinforced by SiC fibers, with assessment of process performance and energy efficiency. Different fractions of the additive SiC fibers were taken into account to evaluate the stability and repeatability of the process. Circular pocket features were machined by using a micro-EDM machine and the results from different process parameters combinations were analyzed with respect to material removal, electrode wear and cavity surface quality. Discharges data were collected and characterized to define the actual values of process parameters (peak current, pulse duration and energy per discharge). The characteristics of the pulses were used to evaluate the machinability and to investigate the energy efficiency of the process. The main process performance indicators were calculated as a function of the number of occurred discharges and the energy of a single discharge. The results show interesting aspects related to the process from both the performances and the removal mechanism point of view. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

10 pages, 1603 KiB  
Article
Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer
by Woong Kirl Choi and Seung Yub Baek
Materials 2015, 8(9), 6498-6507; https://doi.org/10.3390/ma8095317 - 22 Sep 2015
Cited by 6 | Viewed by 7352
Abstract
In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact [...] Read more.
In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width. Full article
(This article belongs to the Special Issue Selected Papers from ICETI2014)
Show Figures

Graphical abstract

Back to TopTop