Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = miR-17–92 polycistronic cluster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1726 KiB  
Review
The miR-183 Cluster: Biogenesis, Functions, and Cell Communication via Exosomes in Cancer
by Shuhui Li, Wei Meng, Ziyi Guo, Min Liu, Yanyun He, Yanli Li and Zhongliang Ma
Cells 2023, 12(9), 1315; https://doi.org/10.3390/cells12091315 - 5 May 2023
Cited by 7 | Viewed by 3525
Abstract
Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer [...] Read more.
Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment. Full article
Show Figures

Figure 1

23 pages, 5643 KiB  
Article
Aberrant Methylation of the Imprinted C19MC and MIR371-3 Clusters in Patients with Non-Small Cell Lung Cancer
by Laura Boyero, José Francisco Noguera-Uclés, Alejandro Castillo-Peña, Ana Salinas, Amparo Sánchez-Gastaldo, Miriam Alonso, Johana Cristina Benedetti, Reyes Bernabé-Caro, Luis Paz-Ares and Sonia Molina-Pinelo
Cancers 2023, 15(5), 1466; https://doi.org/10.3390/cancers15051466 - 25 Feb 2023
Cited by 6 | Viewed by 2991
Abstract
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find [...] Read more.
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find their potential target genes, as well as to study their prognostic role. DNA methylation status was analyzed in a NSCLC patient cohort (n = 47) and compared with a control cohort including COPD patients and non-COPD subjects (n = 23) using the Illumina Infinium Human Methylation 450 BeadChip. Hypomethylation of miRNAs located on chromosome 19q13.42 was found to be specific for tumor tissue. We then identified the target mRNA–miRNA regulatory network for the components of the C19MC and MIR371-3 clusters using the miRTargetLink 2.0 Human tool. The correlations of miRNA-target mRNA expression from primary lung tumors were analyzed using the CancerMIRNome tool. From those negative correlations identified, we found that a lower expression of 5 of the target genes (FOXF2, KLF13, MICA, TCEAL1 and TGFBR2) was significantly associated with poor overall survival. Taken together, this study demonstrates that the imprinted C19MC and MIR371-3 miRNA clusters undergo polycistronic epigenetic regulation leading to deregulation of important and common target genes with potential prognostic value in lung cancer. Full article
(This article belongs to the Special Issue Lung Cancer - Molecular Insights and Targeted Therapies)
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
miR-302 Attenuates Mutant Huntingtin-Induced Cytotoxicity through Restoration of Autophagy and Insulin Sensitivity
by Ching-Chi Chang, Sing-Hua Tsou, Wei-Jen Chen, Ying-Jui Ho, Hui-Chih Hung, Guang-Yaw Liu, Sandeep Kumar Singh, Hsin-Hua Li and Chih-Li Lin
Int. J. Mol. Sci. 2021, 22(16), 8424; https://doi.org/10.3390/ijms22168424 - 5 Aug 2021
Cited by 17 | Viewed by 2780
Abstract
Huntington’s disease (HD) is an autosomal-dominant brain disorder caused by mutant huntingtin (mHtt). Although the detailed mechanisms remain unclear, the mutational expansion of polyglutamine in mHtt is proposed to induce protein aggregates and neuronal toxicity. Previous studies have shown that the decreased insulin [...] Read more.
Huntington’s disease (HD) is an autosomal-dominant brain disorder caused by mutant huntingtin (mHtt). Although the detailed mechanisms remain unclear, the mutational expansion of polyglutamine in mHtt is proposed to induce protein aggregates and neuronal toxicity. Previous studies have shown that the decreased insulin sensitivity is closely related to mHtt-associated impairments in HD patients. However, how mHtt interferes with insulin signaling in neurons is still unknown. In the present study, we used a HD cell model to demonstrate that the miR-302 cluster, an embryonic stem cell-specific polycistronic miRNA, is significantly downregulated in mHtt-Q74-overexpressing neuronal cells. On the contrary, restoration of miR-302 cluster was shown to attenuate mHtt-induced cytotoxicity by improving insulin sensitivity, leading to a reduction of mHtt aggregates through the enhancement of autophagy. In addition, miR-302 also promoted mitophagy and stimulated Sirt1/AMPK-PGC1α pathway thereby preserving mitochondrial function. Taken together, these results highlight the potential role of miR-302 cluster in neuronal cells, and provide a novel mechanism for mHtt-impaired insulin signaling in the pathogenesis of HD. Full article
(This article belongs to the Special Issue Autophagy and Age-Associated Pathologies)
Show Figures

Graphical abstract

15 pages, 4951 KiB  
Article
MiR-92 Family Members Form a Cluster Required for Notochord Tubulogenesis in Urochordate Ciona savignyi
by Libo Yang, Xiaoming Zhang, Chengzhang Liu, Jin Zhang and Bo Dong
Genes 2021, 12(3), 406; https://doi.org/10.3390/genes12030406 - 12 Mar 2021
Cited by 3 | Viewed by 2869
Abstract
MicroRNAs are frequently clustered in the genome and polycistronically transcribed, regulating targeted genes in diverse signaling pathways. The miR-17-92 cluster is a typical miRNA cluster, playing crucial roles in the organogenesis and homeostasis of physiological processes in vertebrates. Here, we identified three miRNAs [...] Read more.
MicroRNAs are frequently clustered in the genome and polycistronically transcribed, regulating targeted genes in diverse signaling pathways. The miR-17-92 cluster is a typical miRNA cluster, playing crucial roles in the organogenesis and homeostasis of physiological processes in vertebrates. Here, we identified three miRNAs (csa-miR-92a, csa-miR-92b, and csa-miR-92c) that belonged to the miR-92 family and formed a miRNA cluster in the genome of a urochordate marine ascidian Ciona savignyi. Except for miR-92a and miR-92b, other homologs of the vertebrate miR-17-92 cluster members could not be identified in the Ciona genome. We further found that the mature sequences of urochordate miR-92 family members were highly conserved compared with the vertebrate species. The expression pattern revealed that three miR-92 family members had consistent expression levels in adult tissues and were predominantly expressed in heart and muscle tissue. We further showed that, at the embryonic and larval stages, csa-miR-92c was expressed in the notochord of embryos during 18–31 h post fertilization (hpf) by in situ hybridization. Knockout of csa-miR-92c resulted in the disorganization of notochord cells and the block of lumen coalescence in the notochord. Fibroblast growth factor (FGF), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/planar cell polarity (PCP) signaling pathways might be involved in the regulatory processes, since a large number of core genes of these pathways were the predicted target genes of the miR-92 family. Taken together, we identified a miR-92 cluster in urochordate Ciona and revealed the expression patterns and the regulatory roles of its members in organogenesis. Our results provide expression and phylogenetic data on the understanding of the miR-92 miRNA cluster’s function during evolution. Full article
(This article belongs to the Special Issue Current Genetic Insights in Organ Development)
Show Figures

Figure 1

10 pages, 2951 KiB  
Communication
Identification of a Rare Germline Heterozygous Deletion Involving the Polycistronic miR-17–92 Cluster in Two First-Degree Relatives from a BRCA 1/2 Negative Chilean Family with Familial Breast Cancer: Possible Functional Implications
by Tomás De Mayo, Annemarie Ziegler, Sebastián Morales and Lilian Jara
Int. J. Mol. Sci. 2018, 19(1), 321; https://doi.org/10.3390/ijms19010321 - 22 Jan 2018
Cited by 4 | Viewed by 5903
Abstract
Micro-RNAs (miRNAs) have emerged as novel gene expression regulators. Recent evidence strongly suggests a role for miRNAs in a large variety of cancer-related pathways. Different studies have shown that 18.7 to 37% of all human miRNA genes are clustered. miR-17–92 polycistronic cluster overexpression [...] Read more.
Micro-RNAs (miRNAs) have emerged as novel gene expression regulators. Recent evidence strongly suggests a role for miRNAs in a large variety of cancer-related pathways. Different studies have shown that 18.7 to 37% of all human miRNA genes are clustered. miR-17–92 polycistronic cluster overexpression is associated with human hematolymphoid and solid malignancies including breast cancer (BC). Here, we report the identification of rs770419845, a rare 6 bp deletion located within the polycistronic miR-17–92 cluster, in two first-degree relatives from a Chilean family with familial BC and negative for point mutations in BRCA 1/2 genes. The deletion was identified by Sanger sequencing when 99 BRCA1/2 mutation-negative BC cases with a strong family history were initially screened. In silico analysis predicts that rs770419845 affects the secondary structure and stability of the pre-miR-17–pre-miR-18 region and the entire 17–92 cluster. The deletion was screened in 458 high-risk BRCA1/2-negative Chilean families and 480 controls. rs770419845 was not detected in any control but identified in a single family with two cases of BC and other cancers. Both BC cases, the mother and her daughter, carried the deletion. Based on bioinformatic analyses, the location of the deletion and its low frequency, we presume rs770419845 may be a pathogenic variant. Functional studies are needed to support this hypothesis. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology)
Show Figures

Graphical abstract

24 pages, 1094 KiB  
Article
Analysis of Transcriptional Regulation of the Human miR-17-92 Cluster; Evidence for Involvement of Pim-1
by Maren Thomas, Kerstin Lange-Grünweller, Dorothee Hartmann, Lara Golde, Julia Schlereth, Dennis Streng, Achim Aigner, Arnold Grünweller and Roland K. Hartmann
Int. J. Mol. Sci. 2013, 14(6), 12273-12296; https://doi.org/10.3390/ijms140612273 - 7 Jun 2013
Cited by 29 | Viewed by 9744
Abstract
The human polycistronic miRNA cluster miR-17-92 is frequently overexpressed in hematopoietic malignancies and cancers. Its transcription is in part controlled by an E2F-regulated host gene promoter. An intronic A/T-rich region directly upstream of the miRNA coding region also contributes to cluster expression. Our [...] Read more.
The human polycistronic miRNA cluster miR-17-92 is frequently overexpressed in hematopoietic malignancies and cancers. Its transcription is in part controlled by an E2F-regulated host gene promoter. An intronic A/T-rich region directly upstream of the miRNA coding region also contributes to cluster expression. Our deletion analysis of the A/T-rich region revealed a strong dependence on c-Myc binding to the functional E3 site. Yet, constructs lacking the 5'-proximal ~1.3 kb or 3'-distal ~0.1 kb of the 1.5 kb A/T-rich region still retained residual specific promoter activity, suggesting multiple transcription start sites (TSS) in this region. Furthermore, the protooncogenic kinase, Pim-1, its phosphorylation target HP1γ and c-Myc colocalize to the E3 region, as inferred from chromatin immunoprecipitation. Analysis of pri-miR-17-92 expression levels in K562 and HeLa cells revealed that silencing of E2F3, c-Myc or Pim-1 negatively affects cluster expression, with a synergistic effect caused by c-Myc/Pim-1 double knockdown in HeLa cells. Thus, we show, for the first time, that the protooncogene Pim-1 is part of the network that regulates transcription of the human miR-17-92 cluster. Full article
(This article belongs to the Special Issue Regulation by non-coding RNAs 2013)
Show Figures

Back to TopTop