Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = meteoroid dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1880 KB  
Data Descriptor
Historical Bolide Infrasound Dataset (1960–1972)
by Elizabeth A. Silber and Rodney W. Whitaker
Data 2025, 10(5), 71; https://doi.org/10.3390/data10050071 - 9 May 2025
Viewed by 842
Abstract
We present the first fully curated, publicly accessible archive of infrasonic records from ten large bolide events documented by the U.S. Air Force Technical Applications Center’s global microbarometer network between 1960 and 1972. Captured on analog strip-chart paper, these waveforms predate modern digital [...] Read more.
We present the first fully curated, publicly accessible archive of infrasonic records from ten large bolide events documented by the U.S. Air Force Technical Applications Center’s global microbarometer network between 1960 and 1972. Captured on analog strip-chart paper, these waveforms predate modern digital arrays and space-based sensors, making them a unique window on meteoroid activity in the mid-twentieth century. Prior studies drew important scientific conclusions from the records but released only limited artifacts, chiefly period–amplitude tables and unprocessed scans, leaving the underlying data inaccessible for independent study. The present release transforms those limited excerpts into a research-ready resource. By capturing ten large events in the mid-20th century, the dataset constitutes a critical reference point for assessing bolide activity before the advent of modern space-based and digital ground-based monitoring. The multi-year coverage and worldwide distribution of events provide a valuable reference for comparing past and more recent detections, facilitating assessments of long-term flux and the dynamics of acoustic wave propagation in Earth’s atmosphere. The dataset’s availability in a consolidated format ensures straightforward access to waveforms and derived measurements, supporting a wide range of scientific inquiries into bolide physics and infrasound monitoring. By preserving these historical acoustic observations, the collection maintains a significant record of mid-20th-century meteoroid entries. It thereby establishes a basis for further refinement of impact hazard evaluations, contributes to historical continuity in atmospheric observation, and enriches the study of meteoroid-generated infrasound signals on a global scale. Full article
Show Figures

Figure 1

33 pages, 9246 KB  
Review
Meteor Radar for Investigation of the MLT Region: A Review
by Iain M. Reid
Atmosphere 2024, 15(4), 505; https://doi.org/10.3390/atmos15040505 - 20 Apr 2024
Cited by 11 | Viewed by 4693
Abstract
This is an introductory review of modern meteor radar and its application to the measurement of the dynamical parameters of the Mesosphere Lower Thermosphere (MLT) Region within the altitude range of around 70 to 110 km, which is where most meteors are detected. [...] Read more.
This is an introductory review of modern meteor radar and its application to the measurement of the dynamical parameters of the Mesosphere Lower Thermosphere (MLT) Region within the altitude range of around 70 to 110 km, which is where most meteors are detected. We take a historical approach, following the development of meteor radar for studies of the MLT from the time of their development after the Second World War until the present. The application of the meteor radar technique is closely aligned with their ability to make contributions to Meteor Astronomy in that they can determine meteor radiants, and measure meteoroid velocities and orbits, and so these aspects are noted when required. Meteor radar capabilities now extend to measurements of temperature and density in the MLT region and show potential to be extended to ionospheric studies. New meteor radar networks are commencing operation, and this heralds a new area of investigation as the horizontal spatial variation of the upper-atmosphere wind over an extended area is becoming available for the first time. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

19 pages, 8676 KB  
Review
A Review of Infrasound and Seismic Observations of Sample Return Capsules since the End of the Apollo Era in Anticipation of the OSIRIS-REx Arrival
by Elizabeth A. Silber, Daniel C. Bowman and Sarah Albert
Atmosphere 2023, 14(10), 1473; https://doi.org/10.3390/atmos14101473 - 23 Sep 2023
Cited by 12 | Viewed by 6352
Abstract
Advancements in space exploration and sample return technology present a unique opportunity to leverage sample return capsules (SRCs) towards studying atmospheric entry of meteoroids and asteroids. Specifically engineered for the secure transport of valuable extraterrestrial samples from interplanetary space to Earth, SRCs offer [...] Read more.
Advancements in space exploration and sample return technology present a unique opportunity to leverage sample return capsules (SRCs) towards studying atmospheric entry of meteoroids and asteroids. Specifically engineered for the secure transport of valuable extraterrestrial samples from interplanetary space to Earth, SRCs offer unexpected benefits that reach beyond their intended purpose. As SRCs enter the Earth’s atmosphere at hypervelocity, they are analogous to naturally occurring meteoroids and thus, for all intents and purposes, can be considered artificial meteors. Furthermore, SRCs are capable of generating shockwaves upon reaching the lower transitional flow regime, and thus can be detected by strategically positioned geophysical instrumentation. NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) SRC is one of only a handful of artificial objects to re-enter the Earth’s atmosphere from interplanetary space since the end of the Apollo era and it will provide an unprecedented observational opportunity. This review summarizes past infrasound and seismic observational studies of SRC re-entries since the end of the Apollo era and presents their utility towards the better characterization of meteoroid flight through the atmosphere. Full article
(This article belongs to the Special Issue Features of Atmospheric Waves)
Show Figures

Figure 1

33 pages, 7124 KB  
Article
Origins and Spatial Distribution of Non-Pure Sulfate Particles (NSPs) in the Stratosphere Detected by the Balloon-Borne Light Optical Aerosols Counter (LOAC)
by Jean-Baptiste Renard, Gwenaël Berthet, Anny-Chantal Levasseur-Regourd, Sergey Beresnev, Alain Miffre, Patrick Rairoux, Damien Vignelles and Fabrice Jégou
Atmosphere 2020, 11(10), 1031; https://doi.org/10.3390/atmos11101031 - 25 Sep 2020
Cited by 12 | Viewed by 4028
Abstract
While water and sulfuric acid droplets are the main component of stratospheric aerosols, measurements performed for about 30 years have shown that non-sulfate particles (NSPs) are also present. Such particles, released from the Earth mainly through volcanic eruptions, pollution or biomass burning, or [...] Read more.
While water and sulfuric acid droplets are the main component of stratospheric aerosols, measurements performed for about 30 years have shown that non-sulfate particles (NSPs) are also present. Such particles, released from the Earth mainly through volcanic eruptions, pollution or biomass burning, or coming from space, present a wide variety of compositions, sizes, and shapes. To better understand the origin of NSPs, we have performed measurements with the Light Optical Aerosol Counter (LOAC) during 151 flights under weather balloons in the 2013–2019 period reaching altitudes up to 35 km. Coupled with previous counting measurements conducted over the 2004–2011 period, the LOAC measurements indicate the presence of stratospheric layers of enhanced concentrations associated with NSPs, with a bimodal vertical repartition ranging between 17 and 30 km altitude. Such enhancements are not correlated with permanent meteor shower events. They may be linked to dynamical and photophoretic effects lifting and sustaining particles coming from the Earth. Besides, large particles, up to several tens of μm, were detected and present decreasing concentrations with increasing altitudes. All these particles can originate from Earth but also from meteoroid disintegrations and from the interplanetary dust cloud and comets. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

21 pages, 861 KB  
Article
Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields
by Elizabeth A. Silber, Mihai L. Niculescu, Peter Butka and Reynold E. Silber
Atmosphere 2018, 9(5), 202; https://doi.org/10.3390/atmos9050202 - 22 May 2018
Cited by 6 | Viewed by 5152
Abstract
Nitric oxide (NO) is a critical indicator of energy deposition in the lower thermosphere because of its formational pathways. Thus, it is important to constrain sources of NO, such as meteoroid generated hypersonic flows below 95 km altitude. This paper aims to examine [...] Read more.
Nitric oxide (NO) is a critical indicator of energy deposition in the lower thermosphere because of its formational pathways. Thus, it is important to constrain sources of NO, such as meteoroid generated hypersonic flows below 95 km altitude. This paper aims to examine the process of and place the upper estimate on NO production in high temperature flow fields of strongly ablating meteoroids. For centimeter-sized meteoroids, the production of NO is bound within the dynamically stable volume of bright meteor plasma trains in the region of 80–95 km. Our estimate of the upper limit of the cumulative mass of NO produced annually by centimeter-sized meteoroids is significantly lower than that reported in previous early studies. In the context of shock waves, we explored the reasons why centimeter-sized meteoroids are the most efficient producers of NO. Effects of nonlinear processes on meteoric NO production are discussed. Full article
(This article belongs to the Special Issue Transition from Linear to Non-Linear Flows in Atmospheric Processes)
Show Figures

Figure 1

Back to TopTop