Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields
Abstract
:1. Introduction
2. Sources of NO in the Upper Atmosphere
2.1. Production of NO in the Lower Thermosphere
2.2. Formation of NO in Hypersonic Flows
3. Theoretical Considerations for the Understanding of Meteoric NO Formation
3.1. Role of Meteor Masses, Ablation and Vapor Shielding in NO Production
3.2. Meteor Generated Shock Waves
3.3. The Role of Initial Radius, Light and Ionization Curves in the Framework of NO Production
3.4. The Assumptions
- The size of the initial and ablation amplified shock region in front of the meteoroid (or initial vapor cloud) is about twenty times that of the meteoroid diameter at 95 km and around ten times the meteoroid diameter at 80 km. This is consistent with the height dependent scaling behavior of the initial radius or MHE, discussed earlier.
- The production of NO is constant between 80 and 95 km for 1 cm meteoroids. We have discussed the main aspects that contribute to this assumption in the previous section. However, for the purpose of this exposition, here we briefly summarize that reasoning again. The ionization and light curves are assumed not to change significantly between 80 and 95 km (e.g., [101]), and consequently we assume that the production rate of NO is constant in that region. Accordingly, we also assume that the velocity change is negligible during NO production in that region of the MLT. Of course, meteoroids in our considered size range do not ablate at a constant rate between 80–95 km altitudes, as mass loss and deceleration also play a critical role (e.g., [102]). However, consider that a typical 1 cm meteoroid (m~10−3 kg) loses about 1.5 × 10−6 kg if it ablates in that part of the atmosphere at a constant rate that produces its maximum electron line density. This is not significantly different from the mass loss as a function of variable ionization or light curve. Finally, the variability of heights of maximum ablation (signifying the maximum peaks in ionization and light curves [101]) for example, as a function of velocity and composition justifies the approximation as the constant ablation and constant rate of NO production is in this region.
- The NO production is bound by the initial radius of the bright meteor plasma train (e.g., [94]). Irrespective of the size of the area of the initial shock region, the maximum production of meteoric NO for body sizes of about 1 cm is limited by the initial radius r0 of the dynamically stable plasma volume of the meteor train. The process of flow field cooling negates Reaction (1) and favors Reaction (2). During the stage of turbulent diffusion and expansion of high temperature recompression region behind the meteoroid (see [14]), the available N species react with O2 that survived the passage of the cylindrical shock wave. However, at the r0 boundary, Reaction (2) is impeded by the limited supply of the N species at the moment when the meteor train starts to expand under the effects of ambipolar diffusion.
- The effects of fragmentation are excluded. In this meteoroid size regime, the fragmentation may only potentially reduce the total NO production [13].
- The effects of UV radiation from the shock layer are ignored.
- Only vertical meteor entry is considered. The variation of zenith angle would not significantly impact the overall estimates in this study. This was shown by Menees and Park [9].
4. Methods
5. Results and Discussion
5.1. The Upper Bound of NO Produced by Centimeter-Sized Meteoroids
5.2. Implications
6. Summary and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Plane, J.M. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 2012, 41, 6507–6518. [Google Scholar] [CrossRef] [PubMed]
- Drolshagen, G.; Koschny, D.; Drolshagen, S.; Kretschmer, J.; Poppe, B. Mass accumulation of earth from interplanetary dust, meteoroids, asteroids and comets. Planet. Space Sci. 2017, 143, 21–27. [Google Scholar] [CrossRef]
- Plane, J.M. Atmospheric chemistry of meteoric metals. Chem. Rev. 2003, 103, 4963–4984. [Google Scholar] [CrossRef] [PubMed]
- Plane, J.M.; Feng, W.; Dawkins, E.C. The mesosphere and metals: Chemistry and changes. Chem. Rev. 2015, 115, 4497–4541. [Google Scholar] [CrossRef] [PubMed]
- Plane, J.M.C.; Whalley, C.L. A new model for magnesium chemistry in the upper atmosphere. J. Phys. Chem. A 2012, 116, 6240–6252. [Google Scholar] [CrossRef] [PubMed]
- Plane, J.M.C.; Bailey, S.M.; Baumgarten, G.; Rapp, M. Layered phenomena in the mesopause region. J. Atmos. Sol. Terr. Phys. 2015, 127, 1–2. [Google Scholar] [CrossRef]
- Carrillo-Sánchez, J.D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J.M.C. Sources of cosmic dust in the earth’s atmosphere. Geophys. Res. Lett. 2016, 43, 11979–911986. [Google Scholar] [CrossRef] [PubMed]
- Berezhnoy, A.A.; Borovička, J. Formation of molecules in bright meteors. Icarus 2010, 210, 150–157. [Google Scholar] [CrossRef]
- Menees, G.P.; Park, C. Nitric oxide formation by meteoroids in the upper atmosphere. Atmos. Environ. 1976, 10, 535–545. [Google Scholar] [CrossRef]
- Jenniskens, P.; Laux, C.O.; Wilson, M.A.; Schaller, E.L. The mass and speed dependence of meteor air plasma temperatures. Astrobiology 2004, 4, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.D. Hypersonic and High Temperature Gas Dynamics, 2nd ed.; AIAA: Reston, VA, USA, 2006. [Google Scholar]
- Park, C. Estimates of nitric oxide production for lifting spacecraft reentry. Atmos. Environ. 1976, 10, 309–313. [Google Scholar] [CrossRef]
- Park, C.; Menees, G.P. Odd nitrogen production by meteoroids. J. Geophys. Res. Oceans 1978, 83, 4029–4035. [Google Scholar] [CrossRef]
- Silber, E.A.; Hocking, W.K.; Niculescu, M.L.; Gritsevich, M.; Silber, R.E. On shock waves and the role of hyperthermal chemistry in the early diffusion of overdense meteor trains. Mon. Not. R. Astron. Soc. 2017, 469, 1869–1882. [Google Scholar] [CrossRef]
- Bailey, S.M.; Barth, C.A.; Solomon, S.C. A model of nitric oxide in the lower thermosphere. J. Geophys. Res. Space Phys. 2002, 107, SIA 22-21–SIA 22-12. [Google Scholar] [CrossRef]
- Marsh, D.R.; Solomon, S.C.; Reynolds, A.E. Empirical model of nitric oxide in the lower thermosphere. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Hendrickx, K.; Megner, L.; Marsh, D.R.; Smith-Johnsen, C. Production and transport mechanisms of NO in observations and models. Atmos. Chem. Phys. Discuss. 2018, 2018, 1–24. [Google Scholar] [CrossRef]
- Fytterer, T.; Bender, S.; Berger, U.; Nieder, H.; Sinnhuber, M.; Wissing, J. Model studies of short-term variations induced in trace gases by particle precipitation in the mesosphere and lower thermosphere. J. Geophys. Res. Space Phys. 2016, 121, 10431–10447. [Google Scholar] [CrossRef]
- Smith-Johnsen, C.; Tyssøy, H.N.; Hendrickx, K.; Orsolini, Y.; Kumar, G.K.; Ødegaard, L.K.G.; Sandanger, M.I.; Stordal, F.; Megner, L. Direct and indirect electron precipitation effect on nitric oxide in the polar middle atmosphere, using a full range energy spectrum. J. Geophys. Res. Space Phys. 2017, 122, 8679–8693. [Google Scholar] [CrossRef]
- Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C.; Kieser, J.; Krivolutsky, A.; López-Puertas, M.; Marsh, D.; Reddmann, T. Composition changes after the” Halloween” solar proton event: The High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 2011, 11, 9089. [Google Scholar] [CrossRef]
- Newnham, D.A.; Espy, P.J.; Clilverd, M.A.; Rodger, C.J.; Seppälä, A.; Maxfield, D.J.; Hartogh, P.; Holmén, K.; Horne, R.B. Direct observations of nitric oxide produced by energetic electron precipitation into the antarctic middle atmosphere. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Hendrickx, K.; Megner, L.; Gumbel, J.; Siskind, D.E.; Orsolini, Y.J.; Tyssøy, H.N.; Hervig, M. Observation of 27 day solar cycles in the production and mesospheric descent of EPP-produced NO. J. Geophys. Res. Space Phys. 2015, 120, 8978–8988. [Google Scholar] [CrossRef]
- Randall, C.E.; Harvey, V.L.; Singleton, C.S.; Bailey, S.M.; Bernath, P.F.; Codrescu, M.; Nakajima, H.; Russell, J.M. Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Funke, B.; López-Puertas, M.; Stiller, G.P.; Clarmann, T. Mesospheric and stratospheric noy produced by energetic particle precipitation during 2002–2012. J. Geophys. Res. Atmos. 2014, 119, 4429–4446. [Google Scholar] [CrossRef]
- Jackman, C.H.; Fleming, E.L.; Vitt, F.M. Influence of extremely large solar proton events in a changing stratosphere. J. Geophys. Res. Atmos. 2000, 105, 11659–11670. [Google Scholar] [CrossRef]
- Bender, S.; Sinnhuber, M.; Langowski, M.; Burrows, J.P. Retrieval of nitric oxide in the mesosphere from sciamachy nominal limb spectra. Atmos. Meas. Tech. 2017, 10, 209–220. [Google Scholar] [CrossRef]
- Kiviranta, J.; Pérot, K.; Eriksson, P.; Murtagh, D. An empirical model of nitric oxide in the upper mesosphere and lower thermosphere based on 12 years of ODIN-SMR measurements. Atmos. Chem. Phys. 2018, in press. [Google Scholar] [CrossRef]
- Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The halogen occultation experiment. J. Geophys. Res. Atmos. 1993, 98, 10777–10797. [Google Scholar] [CrossRef]
- Barth, C.A.; Tobiska, W.K.; Siskind, D.E.; Cleary, D.D. Solar-terrestrial coupling: Low-latitude thermospheric nitric oxide. Geophys. Res. Lett. 1988, 15, 92–94. [Google Scholar] [CrossRef]
- Barth, C.A.; Bailey, S.M.; Solomon, S.C. Solar-terrestrial coupling: Solar soft x-rays and thermospheric nitric oxide. Geophys. Res. Lett. 1999, 26, 1251–1254. [Google Scholar] [CrossRef]
- Rusch, D.W.; Barth, C.A. Satellite measurements of nitric oxide in the polar region. J. Geophys. Res. 1975, 80, 3719–3721. [Google Scholar] [CrossRef]
- Solomon, S.C.; Barth, C.A.; Bailey, S.M. Auroral production of nitric oxide measured by the SNOE satellite. Geophys. Res. Lett. 1999, 26, 1259–1262. [Google Scholar] [CrossRef]
- Barth, C.A.; Baker, D.N.; Mankoff, K.D.; Bailey, S.M. The northern auroral region as observed in nitric oxide. Geophys. Res. Lett. 2001, 28, 1463–1466. [Google Scholar] [CrossRef]
- Barth, C.A. Nitric oxide in the lower thermosphere. Planet. Space Sci. 1992, 40, 315–336. [Google Scholar] [CrossRef]
- Kockarts, G. Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett. 1980, 7, 137–140. [Google Scholar] [CrossRef]
- López-Puertas, M.; Taylor, F.W. Cooling and heating rates. In Non-Lte Radiative Transfer in the Atmosphere; World Scientific: Singapore, 2011; pp. 327–359. [Google Scholar]
- Hedin, J.; Rapp, M.; Khaplanov, M.; Stegman, J.; Witt, G. Observations of NO in the upper mesosphere and lower thermosphere during ECOMA 2010. Ann. Geophys. 2012, 30, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Sheese, P.E.; Gattinger, R.L.; Llewellyn, E.J.; Boone, C.D.; Strong, K. Nighttime nitric oxide densities in the southern hemisphere mesosphere–lower thermosphere. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Pérot, K.; Urban, J.; Murtagh, D.P. Unusually strong nitric oxide descent in the arctic middle atmosphere in early 2013 as observed by ODIN/SMR. Atmos. Chem. Phys. 2014, 14, 8009–8015. [Google Scholar] [CrossRef]
- Meraner, K.; Schmidt, H. Transport of nitrogen oxides through the winter mesopause in HAMMONIA. J. Geophys. Res. Atmos. 2016, 121, 2556–2570. [Google Scholar] [CrossRef]
- Zel'dovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Dover Publications: Mineola, NY, USA, 2002. [Google Scholar]
- Sarma, G. Physico–chemical modelling in hypersonic flow simulation. Prog. Aerosp. Sci. 2000, 36, 281–349. [Google Scholar] [CrossRef]
- Bose, D.; Candler, G.V. Thermal rate constants of the N2+O→NO+N reaction using ab initio 3A″ and 3A′ potential energy surfaces. J. Chem. Phys. 1996, 104, 2825–2833. [Google Scholar] [CrossRef]
- Bose, D.; Candler, G.V. Simulation of hypersonic flows using a detailed nitric oxide formation model. Phys. Fluids 1997, 9, 1171–1181. [Google Scholar] [CrossRef]
- Andrienko, D.; Boyd, I.D. Simulation of O2-N Collisions on ab-Initio Potential Energy Surfaces. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016; p. 1249. [Google Scholar]
- Andrienko, D.; Boyd, I.D. State-Resolved Characterization of Nitric Oxide Formation in Shock Flows. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018; p. 1233. [Google Scholar]
- Andrienko, D.A.; Boyd, I.D. Vibrational energy transfer and dissociation in O2–N2 collisions at hyperthermal temperatures. J. Chem. Phys. 2018, 148, 084309. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E. Physics of High Temperature Air I, II; Institute for Defense Analyses: Alexandria, VA, USA, 1990. [Google Scholar]
- Hayes, J.E.; Lin, S.C. A quasi-one-dimensional treatment of chemical reactions in turbulent wakes of hypersonic objects. AIAA J. 1964, 2, 1214–1222. [Google Scholar] [CrossRef]
- Halliday, I.; Griffin, A.A.; Blackwell, A.T. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteorit. Planet. Sci. 1996, 31, 185–217. [Google Scholar] [CrossRef]
- Popova, O.; Sidneva, S.; Strelkov, A.; Shuvalov, V. Formation of disturbed area around fast meteor body. In Proceedings of the Meteoroids 2001 Conference, Kiruna, Sweden, 6–10 August 2001; pp. 237–245. [Google Scholar]
- Brown, P.G.; Assink, J.D.; Astiz, L.; Blaauw, R.; Boslough, M.B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; et al. A 500-kiloton airburst over chelyabinsk and an enhanced hazard from small impactors. Nature 2013, 503, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell-Brown, M.; Koschny, D. Model of the ablation of faint meteors. Astron. Astrophys. 2004, 418, 751–758. [Google Scholar] [CrossRef]
- Josyula, E.; Burt, J. Review of Rarefied Gas Effects in Hypersonic Applications. DTIC Document RTO-EN-AVT-194. Available online: https://www.researchgate.net/publication/267370756_Review_of_Rarefied_Gas_Effects_in_Hypersonic_Applications (accessed on 15 January 2018).
- Silber, E.A.; Brown, P.G.; Krzeminski, Z. Optical observations of meteors generating infrasound: Weak shock theory and validation. J. Geophys. Res. Planets 2015, 120, 413–428. [Google Scholar] [CrossRef]
- Moreno-Ibáñez, M.; Silber, E.A.; Gritsevich, M.; Trigo-Rodríguez, J.M. Flight Flow Regimes of Meteoroids Determined from Infrasound Detection. In Proceedings of the 49th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; p. 2327. [Google Scholar]
- Baggaley, W. Meteors and Atmospheres, Symposium-International Astronomical Union; Cambridge Univ Press: Cambridge, UK, 1980; pp. 85–100. [Google Scholar]
- Hill, K.; Rogers, L.; Hawkes, R. Sputtering and high altitude meteors. Earth Moon Planets 2004, 95, 403–412. [Google Scholar] [CrossRef]
- Rogers, L.; Hill, K.; Hawkes, R. Mass loss due to sputtering and thermal processes in meteoroid ablation. Planet. Space Sci. 2005, 53, 1341–1354. [Google Scholar] [CrossRef]
- Vinković, D. Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors. Adv. Space Res. 2007, 39, 574–582. [Google Scholar] [CrossRef]
- Bronshten, V.A. Physics of Meteoric Phenomena; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Boyd, I.D. Computation of atmospheric entry flow about a leonid meteoroid. In Leonid Storm Research; Springer: Dordrecht, The Netherlands, 2000; pp. 93–108. [Google Scholar]
- Rajchl, J. On the interaction layer in front of a meteor body. Bull. Astron. Inst. Czechoslov. 1969, 20, 363. [Google Scholar]
- Popova, O.P.; Sidneva, S.N.; Shuvalov, V.V.; Strelkov, A.S. Screening of meteoroids by ablation vapor in high-velocity meteors. Earth Moon Planets 2000, 82, 109–128. [Google Scholar]
- Silber, E.A.; Boslough, M.; Hocking, W.K.; Gritsevich, M.; Whitaker, R.W. Physics of meteor generated shock waves in the earth’s atmosphere—A review. Adv. Space Res. 2018, in press. [Google Scholar] [CrossRef]
- Popova, O.P.; Strelkov, A.S.; Sidneva, S.N.; Shuvalov, V.V. Formation of Disturbed Area Around Fast Meteor Body; Report SA4647399000; The Institute of Space and Aeronautical Science: Kanagawa, Japan, 2003; pp. 199–206. [Google Scholar]
- Gnoffo, P.A. Planetary-entry gas dynamics. Ann. Rev. Fluid Mech. 1999, 31, 459–494. [Google Scholar] [CrossRef]
- Öpik, E.J. Physics of Meteor Flight in the Atmosphere; Dover Publications: Mineola, NY, USA, 1958. [Google Scholar]
- Jenniskens, P.; Wilson, M.A.; Packan, D.; Laux, C.O.; Krüger, C.H.; Boyd, I.D.; Popova, O.P.; Fonda, M. Meteors: A delivery mechanism of organic matter to the early earth. In Leonid Storm Research; Springer: Dordrecht, The Netherlands, 2000; pp. 57–70. [Google Scholar]
- Stenbaek-Nielsen, H.C.; Jenniskens, P. A “shocking” leonid meteor at 1000 fps. Adv. Space Res. 2004, 33, 1459–1465. [Google Scholar] [CrossRef]
- Jenniskens, P.; Stenbaek-Nielsen, H.C. Meteor wake in high frame-rate images-implications for the chemistry of ablated organic compounds. Astrobiology 2004, 4, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Popova, O. Meteoroid ablation models. Earth Moon Planets 2005, 95, 303–319. [Google Scholar] [CrossRef]
- Ceplecha, Z.; Borovička, J.; Elford, W.G.; ReVelle, D.O.; Hawkes, R.L.; Porubčan, V.; Šimek, M. Meteor phenomena and bodies. Space Sci. Rev. 1998, 84, 327–471. [Google Scholar] [CrossRef]
- Close, S.; Oppenheim, M.; Hunt, S.; Dyrud, L. Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies. J. Geophys. Res. Space Phys. 2002, 107, SIA 9-1–SIA 9-12. [Google Scholar] [CrossRef]
- Jones, W. Theory of the initial radius of meteor trains. Mon. Not. R. Astron. Soc. 1995, 275, 812–818. [Google Scholar] [CrossRef]
- Marshall, R.A.; Brown, P.; Close, S. Plasma distributions in meteor head echoes and implications for radar cross section interpretation. Planet. Space Sci. 2017, 143, 203–208. [Google Scholar] [CrossRef]
- Rajchl, J. Shock waves and flares by meteors. Bull. Astron. Inst. Czechoslov. 1972, 23, 357–365. [Google Scholar]
- Vondrak, T.; Plane, J.; Broadley, S.; Janches, D. A chemical model of meteoric ablation. Atmos. Chem. Phys. 2008, 8, 7015–7031. [Google Scholar] [CrossRef]
- Zinn, J.; O’Dean, P.J.; ReVelle, D.O. Leonid meteor ablation, energy exchange, and trail morphology. Adv. Space Res. 2004, 33, 1466–1474. [Google Scholar] [CrossRef]
- Lees, L.; Hromas, L. Turbulent Diffusion in the Wake of a Bluntnosed Body at Hypersonic Speeds; Space Technology Laboratories Inc.: Los Angeles, CA, USA, 1961; p. 114. [Google Scholar]
- Lin, S.C. Cylindrical shock waves produced by instantaneous energy release. J. Appl. Phys. 1954, 25, 54–57. [Google Scholar] [CrossRef]
- Bennett, F.D. Cylindrical shock waves from exploding wires. Phys. Fluids 1958, 1, 347–352. [Google Scholar] [CrossRef]
- Sakurai, A. Blast Wave Theory; DTIC Document, No. MRC-TSR-497; Wisconsin Univ-Madison Mathematics Research Center: Madison, WI, USA, 1964. [Google Scholar]
- Jones, D.; Goyer, G.; Plooster, M. Shock wave from a lightning discharge. J. Geophys. Res. 1968, 73, 3121–3127. [Google Scholar] [CrossRef]
- Plooster, M.N. Shock Waves from Line Sources; National Center for Atmospheric Research: Boulder, CO, USA, 1968; p. 96. [Google Scholar]
- Plooster, M.N. Shock waves from line sources. Numerical solutions and experimental measurements. Phys. Fluids 1970, 13, 2665–2675. [Google Scholar] [CrossRef]
- Hutchens, G.J. Approximate cylindrical blast theory: Near-field solutions. J. Appl. Phys. 1995, 77, 2912–2915. [Google Scholar] [CrossRef]
- Kaiser, T.R.; Closs, R.L.I. Theory of radio reflections from meteor trails: I. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1952, 43, 1–32. [Google Scholar] [CrossRef]
- Kaiser, T.R. Radio echo studies of meteor ionization. Adv. Phys. 1953, 2, 495–544. [Google Scholar] [CrossRef]
- Stober, G.; Jacobi, C. Electron Line Densities and Meteor Masses Calculated from Models and Meteor Radar Measurements. Available online: http://meteo.physgeo.uni-leipzig.de/de/orga/LIM_Bd_42.pdf (accessed on 17 January 2018).
- Jones, W. Theoretical and observational determinations of the ionization coefficient of meteors. Mon. Not. R. Astron. Soc. 1997, 288, 995–1003. [Google Scholar] [CrossRef]
- Li, Z.-H.; Peng, A.-P.; Zhang, H.-X.; Yang, J.-Y. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for boltzmann model equations. Prog. Aerosp. Sci. 2015, 74, 81–113. [Google Scholar] [CrossRef]
- Hocking, W.K.; Silber, R.E.; Plane, J.M.; Feng, W.; Garbanzo-Salas, M. Decay times of transitionally dense specularly reflecting meteor trails and potential chemical impact on trail lifetimes. Ann. Geophys. 2016, 34, 1119. [Google Scholar] [CrossRef]
- Baggaley, W.; Fisher, G. Measurements of the initial radii of the ionization columns of bright meteors. Planet. Space Sci. 1980, 28, 575–580. [Google Scholar] [CrossRef]
- Greenhow, J.S.; Neufeld, E.L. The variation of ionization along a meteor trail. Mon. Not. R. Astron. Soc. 1957, 117, 359–369. [Google Scholar] [CrossRef]
- Ayers, W.G.; McCrosky, R.E.; Shao, C.-Y. Photographic observations of 10 artificial meteors. SAO Spec. Rep. 1970, 317, 1–39. [Google Scholar]
- Baggaley, W.J.; Webb, T.H. Measurements of the ionization heights of sporadic radio-meteors. Mon. Not. R. Astron. Soc. 1980, 191, 829–839. [Google Scholar] [CrossRef]
- Koten, P.; Borovička, J.; Spurný, P.; Betlem, H.; Evans, S. Atmospheric trajectories and light curves of shower meteors. A&A 2004, 428, 683–690. [Google Scholar]
- Borovička, J.; Spurný, P.; Koten, P. Atmospheric deceleration and light curves of draconid meteors and implications for the structure of cometary dust. A&A 2007, 473, 661–672. [Google Scholar]
- Campbell-Brown, M.D.; Kero, J.; Szasz, C.; Pellinen-Wannberg, A.; Weryk, R.J. Photometric and ionization masses of meteors with simultaneous eiscat uhf radar and intensified video observations. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Vojácek, V. Analysis of fragmentation and radiation of meteoroids in the atmosphere. In Proceedings of the DS’11 Contributed Papers, Part III, Prague, Czech Republic, 31 May–3 June 2011; pp. 7–12. [Google Scholar]
- McNeil, W.J.; Lai, S.T.; Murad, E. Differential ablation of cosmic dust and implications for the relative abundances of atmospheric metals. J. Geophys. Res. 1998, 103, 10899–10912. [Google Scholar] [CrossRef]
- Parkos, D.; Alexeenko, A.; Kulakhmetov, M.; Johnson, B.C.; Melosh, H.J. NOx production and rainout from chicxulub impact ejecta reentry. J. Geophys. Res. Planets 2015, 120, 2152–2168. [Google Scholar] [CrossRef]
- US Standard Atmosphere; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Wang, Z.-H. Theoretical Modelling of Aeroheating on Sharpened Noses under Rarefied Gas Effects and Nonequilibrium Real Gas Effects; Springer: Dordrecht, The Netherlands, 2014; p. 94. [Google Scholar]
- Boyd, I.D.; Candler, G.V.; Levin, D.A. Dissociation modeling in low density hypersonic flows of air. Phys. Fluids 1995, 7, 1757–1763. [Google Scholar] [CrossRef]
- Brandis, A. Analysis of Shock Tube Equilibrium Radiation for Earth Re-Entry Applications. Available online: https://web.stanford.edu/group/ctr/ResBriefs09/07_brandis.pdf (accessed on 17 January 2018).
- Brandis, A.; Johnston, C.; Cruden, B.; Prabhu, D.; Bose, D. Validation of high speed earth atmospheric entry radiative heating from 9.5 to 15.5 km/s. In 43rd AIAA Thermophysics Conference; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; p. 2865. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silber, E.A.; Niculescu, M.L.; Butka, P.; Silber, R.E. Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields. Atmosphere 2018, 9, 202. https://doi.org/10.3390/atmos9050202
Silber EA, Niculescu ML, Butka P, Silber RE. Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields. Atmosphere. 2018; 9(5):202. https://doi.org/10.3390/atmos9050202
Chicago/Turabian StyleSilber, Elizabeth A., Mihai L. Niculescu, Peter Butka, and Reynold E. Silber. 2018. "Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields" Atmosphere 9, no. 5: 202. https://doi.org/10.3390/atmos9050202
APA StyleSilber, E. A., Niculescu, M. L., Butka, P., & Silber, R. E. (2018). Nitric Oxide Production by Centimeter-Sized Meteoroids and the Role of Linear and Nonlinear Processes in the Shock Bound Flow Fields. Atmosphere, 9(5), 202. https://doi.org/10.3390/atmos9050202