Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,241)

Search Parameters:
Keywords = metallic microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7777 KB  
Article
Microstructure and Properties of TA2 Titanium Joints Brazed with Ti–Zr–Cu–Ni Filler Metal
by Zimeng Xiao, Huiling Zhou, Sheng Lu, Zexin Wang and Oleksandr Dobuvyy
Metals 2025, 15(11), 1218; https://doi.org/10.3390/met15111218 (registering DOI) - 2 Nov 2025
Abstract
TA2 titanium was brazed with a Ti–37.5Zr–15Cu–10Ni filler metal at 860–890 °C for 20 min to investigate the influence of temperature on joint properties. Raising the brazing temperature reduced residual filler in the seam center and transformed the microstructure from heterogeneous phases to [...] Read more.
TA2 titanium was brazed with a Ti–37.5Zr–15Cu–10Ni filler metal at 860–890 °C for 20 min to investigate the influence of temperature on joint properties. Raising the brazing temperature reduced residual filler in the seam center and transformed the microstructure from heterogeneous phases to a uniform α-(Ti,Zr) solid-solution matrix, accompanied by significant widening of the diffusion layer. At brazing temperatures of 890 °C, the hardness decreased to below 300 HV0.5 and became more uniform as brittle phases were suppressed. The shear strength reached a maximum of 302 MPa, and the fracture morphology exhibited characteristics of ductile fracture. Micro-electrochemical testing indicated that the joint brazed exhibited an almost uniform current distribution and significantly reduced localized corrosion. Although a small fraction of the Widmanstätten structure was observed at this temperature, it did not impair the overall mechanical performance. These findings demonstrate that a moderate increase in brazing temperature promotes elemental diffusion, alleviates brittle phase enrichment, and markedly enhances the mechanical properties and corrosion resistance of TA2 joints. Full article
Show Figures

Figure 1

18 pages, 4314 KB  
Article
Condition-Dependent Rate Capability of Laser-Structured Hard Carbon Anodes in Sodium-Based Batteries
by Viktoria Falkowski and Wilhelm Pfleging
Batteries 2025, 11(11), 403; https://doi.org/10.3390/batteries11110403 (registering DOI) - 1 Nov 2025
Abstract
Changing the topography of electrodes by ultrafast laser ablation has shown great potential in enhancing electrochemical performance in lithium-ion batteries. The generation of microstructured channels within the electrodes creates shorter pathways for lithium-ion diffusion and mitigates strain from volume expansion during electrochemical cycling. [...] Read more.
Changing the topography of electrodes by ultrafast laser ablation has shown great potential in enhancing electrochemical performance in lithium-ion batteries. The generation of microstructured channels within the electrodes creates shorter pathways for lithium-ion diffusion and mitigates strain from volume expansion during electrochemical cycling. The topography modification enables faster charging, improved rate capability, and the potential to combine high-power and high-energy properties. In this study, we present a preliminary exploration of this approach for sodium-ion battery technology, focusing on the impact of laser-generated channels on hard carbon electrodes in sodium-metal half-cells. The performance was analyzed by employing different conditions, including different electrolytes, separators, and electrodes with varying compaction degrees. To identify key factors contributing to rate capability improvements, we conducted a comparative analysis of laser-structured and unstructured electrodes using methods including scanning electron microscopy, laser-induced breakdown spectroscopy, and electrochemical cycling. Despite being based on a limited sample size, the data reveal promising trends and serve as a basis for further optimization. Our findings suggest that laser structuring can enhance rate capability, particularly under conditions of limited electrolyte wetting or increased electrode density. This highlights the potential of laser structuring to optimize electrode design for next-generation sodium-ion batteries and other post-lithium technologies. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

14 pages, 1585 KB  
Article
Automated Nonlinear Acoustics System for Real-Time Monitoring of Cement-Based Composites
by Theodoti Z. Kordatou, Dimitrios A. Exarchos and Theodore E. Matikas
Sensors 2025, 25(21), 6655; https://doi.org/10.3390/s25216655 (registering DOI) - 31 Oct 2025
Abstract
The development of automated systems for real-time material evaluation is becoming increasingly critical for structural engineering applications, infrastructure diagnostics and advanced material research. This work introduces a novel, fully automated nonlinear acoustics monitoring platform that employs Bulk Wave excitation in combination with non-contact [...] Read more.
The development of automated systems for real-time material evaluation is becoming increasingly critical for structural engineering applications, infrastructure diagnostics and advanced material research. This work introduces a novel, fully automated nonlinear acoustics monitoring platform that employs Bulk Wave excitation in combination with non-contact Laser Doppler Vibrometry (LDV) detection to continuously assess the microstructural evolution of cement-based composites. Unlike conventional approaches—such as ultrasonic velocity measurements or compressive strength tests—which lack sensitivity to early-stage changes and also require manual operation, the proposed system enables unsupervised, high-precision monitoring of the material by leveraging the second and third harmonic generation (β2, β3) as nonlinear indicators of internal material changes. A specialized LabVIEW-based software manages excitation control, signal acquisition, frequency-domain analysis, and real-time feedback. As an initial step, the system’s stability, linearity, and measurement reliability were validated on metallic samples, and verified through long-duration experiments. Subsequently, the system was used to monitor hydration in cement-based specimens with varying water-to-cement and carbon nanotube (CNT) reinforcement ratios, thereby demonstrating its capability to resolve subtle nonlinear responses. The results highlight the system’s enhanced sensitivity, repeatability, and scalability, demonstrating that it as a powerful tool for structural health monitoring, smart infrastructure, and predictive maintenance applications. Full article
Show Figures

Figure 1

28 pages, 2756 KB  
Article
The Role of Process Parameters in Shaping the Microstructure and Porosity of Metallic Components Manufactured by Additive Technology
by Dariusz Sala, Piotr Ledwig, Hubert Pasiowiec, Kamil Cichocki, Magdalena Jasiołek, Marek Libura and Michał Pyzalski
Appl. Sci. 2025, 15(21), 11624; https://doi.org/10.3390/app152111624 - 30 Oct 2025
Viewed by 107
Abstract
Laser Powder Bed Fusion (LPBF) technology represents one of the most promising additive manufacturing methods, enabling the production of components with high geometric complexity and a wide range of industrial and biomedical applications. In this study, the influence of both standard and high-productivity [...] Read more.
Laser Powder Bed Fusion (LPBF) technology represents one of the most promising additive manufacturing methods, enabling the production of components with high geometric complexity and a wide range of industrial and biomedical applications. In this study, the influence of both standard and high-productivity process parameters on the microstructure, porosity, surface roughness, and hardness of three commonly used materials, stainless steel 316L, aluminum alloy AlSi10Mg, and titanium alloy Ti6Al4V, was analyzed. The investigations were carried out on samples fabricated using the EOS M290 system, and their characterization was performed with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), porosity analysis by point counting, Vickers hardness measurements, and optical profilometry. The obtained results revealed significant differences depending on the alloy and the applied parameters. For stainless steel 316L, the high-productivity variant led to grain refinement and stronger crystallographic orientation, albeit at the expense of increased porosity (0.11% vs. 0.05% for the standard variant). In the case of AlSi10Mg alloy, high-productivity parameters enabled a substantial reduction in porosity (from 0.82% to 0.27%) accompanied by an increase in hardness (from 115 HV1 to 122 HV1), highlighting their particular suitability for engineering applications. For the Ti6Al4V alloy, a decrease in porosity (from 0.17% to 0.07%) was observed; however, the increase in mechanical anisotropy resulting from a stronger texture may limit its application in cases requiring isotropic material behavior. The presented research confirms that optimization of LPBF parameters must be strictly tailored to the specific alloy and intended application, ranging from industrial components to biomedical implants. The results provide a foundation for further studies on the relationship between microstructure and functional properties, as well as for the development of hybrid strategies and predictive models of the LPBF process. Full article
(This article belongs to the Special Issue Manufacturing Process of Alloy Materials)
11 pages, 1388 KB  
Article
Effect of ω-Phase Precipitation on Magnetic Susceptibility and Corrosion Resistance of Meta-Stable β-Phase Zr-Nb-Ti-Cr Alloy
by Shinya Tamura, Tomonori Kimura and Yasuhisa Aono
Metals 2025, 15(11), 1208; https://doi.org/10.3390/met15111208 - 30 Oct 2025
Viewed by 115
Abstract
As well as having corrosion resistance and mechanical properties, medical metallic biomaterials used in metal implants must allow imaging by MRI for prognostic diagnosis. Alloys based on Ti, Fe, Co, etc., have the disadvantage that those constituent elements have higher magnetic susceptibility than [...] Read more.
As well as having corrosion resistance and mechanical properties, medical metallic biomaterials used in metal implants must allow imaging by MRI for prognostic diagnosis. Alloys based on Ti, Fe, Co, etc., have the disadvantage that those constituent elements have higher magnetic susceptibility than the tissue surrounding the metallic implant, and this condition results in defects and distortions (“artifacts”) in MR images during MRI imaging. In consideration of this issue, MRI-compatible low-magnetic-susceptibility materials are currently being researched and developed. In this study, microstructural control of Zr-based alloys by alloy design and heat treatment was investigated. The problem with pure Zr is its low corrosion resistance due to the α-phase of its hexagonal-close-packed (HCP) structure. However, alloys that were alloyed and solution heat-treated to a β-phase (body-centered cubic (BCC) structure) showed high corrosion resistance. In particular, when Zr-15Nb-5Ti-3Cr, which has relatively high corrosion resistance, was subjected to aging heat treatment at 673 K for 1.8 ks, precipitation of fine ω-phase in the β-phase was confirmed. The metallographic structure in which the ω-phase precipitated in the β-phase provided high corrosion resistance [≧1000 mV (vs. SHE)] derived from the β-phase, as well as low magnetic susceptibility (approximately 1.2 × 10−6 cm3/g), due to the effect of the ω-phase. This study provides guidelines for microstructural control to achieve both low magnetic susceptibility and high corrosion resistance in Zr-based metallic biomaterials for medical use. Full article
Show Figures

Figure 1

25 pages, 12718 KB  
Article
Temperature-Dependent Effectiveness of Ti, Nb, Zr, and Y in Controlling Grain Growth of AISI 304 Austenitic Stainless Steel
by Jaka Burja, Samo Tome and Aleš Nagode
Crystals 2025, 15(11), 931; https://doi.org/10.3390/cryst15110931 - 29 Oct 2025
Viewed by 107
Abstract
Crystal grain size control in steel is critical for achieving mechanical properties. This study investigates the effectiveness of microalloying with titanium, niobium, zirconium, and yttrium to inhibit grain growth with the pinning effect. The comparison of selected microalloying elements in the exact same [...] Read more.
Crystal grain size control in steel is critical for achieving mechanical properties. This study investigates the effectiveness of microalloying with titanium, niobium, zirconium, and yttrium to inhibit grain growth with the pinning effect. The comparison of selected microalloying elements in the exact same conditions is crucial for understanding their effect and is novel. Hot-rolled samples were annealed across a wide range of temperatures (1050 to 1200 °C) for up to eight hours. Microstructural analysis confirmed the presence of stable precipitates and non-metallic inclusions such as Nb(C,N), Ti(C,N), ZrO2, and Y2O3 acting as obstacles to grain boundary migration. All microalloying elements significantly outperformed the reference steel, but their effectiveness was highly dependent on the annealing temperature. Titanium was the most effective inhibitor at lower temperatures (1050 °C), while zirconium maintained control up to 1150 °C. Critically, at the highest temperature of 1200 °C, only the yttrium-alloyed steel retained a fine-grain structure, demonstrating superior thermal stability. Niobium, conversely, only showed a minimal effect at 1050 °C, though this grade also exhibited the highest hardness (up to 165 HB) due to precipitation hardening. The kinetics of grain growth were successfully modeled using the Arrhenius-type Sellars–Whiteman equation, accurately describing the behavior for up to four hours of annealing. The findings provide critical insight for selecting optimal microalloying strategies based on maximum operating temperature. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 2812 KB  
Article
Green Manufacturing of Rutile (TiO2) Welding Electrodes with Blast Furnace Slag
by Mustafa Kaptanoglu
Inorganics 2025, 13(11), 361; https://doi.org/10.3390/inorganics13110361 - 29 Oct 2025
Viewed by 195
Abstract
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create [...] Read more.
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create a paste. This mixture was then pressed onto 3.25 mm core wires at 150 bar and heat-treated at 150 °C for two hours. Weld quality and performance were evaluated through visual inspections, microstructure and XRD analyses, hardness, tensile, and impact tests. Visual inspections confirmed weld quality comparable to commercial standards, with stable arc and minimal spatter. Microstructure analysis revealed a ferrite-dominated weld metal with TiO2 and FeTiO3 phases in the slag layer, enhancing strength and toughness. Electrodes with 35–40% BFS achieved yield strength of 477–482 MPa, tensile strength of 570–573 MPa, and impact energy of 58–59 J at 0 °C, complying with ISO 2560:2020. BFS integration reduced CO2 emissions by 0.28–0.4 kg per kg of coating and diverted 200–600 kg of slag per ton of steel from landfills. Coating and raw material costs decreased by 33–48% and 15–25%, respectively, aligning with the EU Green Deal’s circular economy goals and enhancing weld quality and sustainability. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

24 pages, 1712 KB  
Review
Urban Mining of Bivalve Shell Waste as a Sustainable Alternative to Limestone Exploitation: A Review on Alkali-Activated Cements and Mortars
by Arthur Paim Cescon, Giovani Jordi Bruschi and Eduardo Pavan Korf
Mining 2025, 5(4), 69; https://doi.org/10.3390/mining5040069 - 29 Oct 2025
Viewed by 173
Abstract
The concept of urban mining refers to the recovery and valorization of valuable resources from urban and industrial waste, contributing to circular economy principles. Within this framework, the present study provides a critical review of alkali-activated binders incorporating bivalve mollusk shells as alternative [...] Read more.
The concept of urban mining refers to the recovery and valorization of valuable resources from urban and industrial waste, contributing to circular economy principles. Within this framework, the present study provides a critical review of alkali-activated binders incorporating bivalve mollusk shells as alternative calcium sources. Shells from oysters, scallops, mussels, clams, cockles, and periwinkles were examined, either in their natural or calcined forms, for use as calcium sources, alkaline activators, or fillers in low-carbon binders. The review evaluates key processing parameters, including precursor composition, type and concentration of alkaline activators, curing conditions, and calcination temperatures, and compares the resulting mechanical, chemical, and microstructural properties. In addition, several studies report applications of these binders in soil stabilization and heavy metal immobilization, demonstrating performances comparable to Portland cement. The findings confirm the technical potential of mollusk shell residues and their contribution to the circular economy by diverting aquaculture waste from landfills and marine environments. Nonetheless, significant knowledge gaps persist, including the limited investigation of non-oyster species, the absence of field-scale studies, and the lack of resource mapping, life cycle, or economic assessments. This synthesis highlights preliminary insights, such as optimal calcination temperatures between 700 and 900 °C and effective combinations with silica and alumina-rich residues. Overall, it outlines a pathway toward transforming an underutilized waste stream into sustainable and technically viable construction materials. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining, 2nd Edition)
Show Figures

Figure 1

16 pages, 5466 KB  
Article
Effects of Contamination on the Recyclability of NdFeB Permanent Magnets via Short-Loop Processing: Review of Common Contaminants and Study on Ni Coating Residues
by Laura Grau, Fabian Burkhardt, Nicolas Moll, Stefan Rathfelder, Spomenka Kobe and Carlo Burkhardt
Recycling 2025, 10(6), 200; https://doi.org/10.3390/recycling10060200 - 29 Oct 2025
Viewed by 192
Abstract
Short-loop recycling of NdFeB trades a reduced ecological burden for a higher sensitivity towards contamination, as the powder is usually further processed as-is. In this investigation, the known effects of common contaminants (O, C, Ni, Cu, and Zn) introduced due to product design [...] Read more.
Short-loop recycling of NdFeB trades a reduced ecological burden for a higher sensitivity towards contamination, as the powder is usually further processed as-is. In this investigation, the known effects of common contaminants (O, C, Ni, Cu, and Zn) introduced due to product design choices, namely from coating material and adhesive residue or a lack of corrosion protection, are reviewed. This study focuses on the impact of such contaminants on the magnetic properties and microstructure of recycled magnets via HPMS and re-sintering. Because of the lack of information regarding the practical effects of metallic coating residues, the impact of Ni contamination on the properties of re-sintered NdFeB magnets is assessed. HPMS processed scrap powder is blended with Ni powder and recycled by sintering. It is found that Ni partially substitutes Fe in the φ-phase, as expected from the literature review, leading to detrimental effects on the coercivity and remanence. The formation of an α-(Fe, Ni) phase is observed. The acceptable limit of Ni contamination without detrimental effects is found to be around 0.25 wt.%; however, due to the substitution in the φ-phase, the contamination is irreversible via short-loop recycling and would accumulate over multiple lifecycles. Full article
Show Figures

Figure 1

16 pages, 6438 KB  
Article
Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue
by Zhongtao Luo, Qi Zhang, Jinyang Guo, Xiaohai Liu, Maoliang Zhang, Xindi Wan, Jiayuan Ye and Lei Liu
Materials 2025, 18(21), 4928; https://doi.org/10.3390/ma18214928 - 28 Oct 2025
Viewed by 291
Abstract
High-temperature sintering for ceramsite preparation is a safe and effective approach to recycle solid waste. Flux components are critical in ceramsite sintering, as they can reduce sintering temperature, modulate the viscosity and content of the liquid phase, and ultimately optimize ceramsite performance. However, [...] Read more.
High-temperature sintering for ceramsite preparation is a safe and effective approach to recycle solid waste. Flux components are critical in ceramsite sintering, as they can reduce sintering temperature, modulate the viscosity and content of the liquid phase, and ultimately optimize ceramsite performance. However, existing studies on lead–zinc tailings (LZTs) and coal gangue (CG)-based ceramsite lack systematic exploration of key fluxes (Na2O, MgO, CaO, Fe2O3), limiting the high-value utilization of these wastes. Under fixed sintering conditions (preheating at 400 °C for 30 min, sintering at 1250 °C for 30 min, heating rate of 10 °C/min), this work systematically investigated the effects of these fluxes (in the forms of carbonates, except for Fe2O3) on LZTs-CG ceramsite. The mechanical properties, mineral composition, microstructure and heavy metal leaching of samples were analyzed using various methods, including uniaxial compression, X-ray diffraction (XRD), scanning electron microscopy (SEM), and inductively coupled plasma optical emission spectrometry (ICP-OES). Results showed that, while Fe2O3 exerted a non-monotonic influence, Na2O, MgO, and CaO improved apparent density and compressive strength, concurrently reducing water absorption, with these effects enhancing in a dose-dependent manner. Na2O, MgO and Fe2O3 facilitated the formation of labradorite, cordierite and hematite, respectively. All fluxes weakened the diffraction peaks of quartz and mullite. ICP-OES results indicated that the fluxes slightly increased Pb and Zn leaching, yet the highest values (0.1975 mg/L for Pb, 0.0485 mg/L for Zn) were well below the limits specified in the Chinese national standard GB 5086.2-1997 (Leaching Toxicity of Solid Waste—Horizontal Vibration Extraction Procedure). This work shows optimized flux composition enables high-performance, eco-safe LZTs-CG ceramsite, supporting LZTs and CG high-value utilization and sustainable development. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 2156 KB  
Article
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
by Xiaopeng Yan, Xinran Lian, Jiuqing Ban, Wanjun He, Song Deng, Wei Yang and Duo Chen
Processes 2025, 13(11), 3458; https://doi.org/10.3390/pr13113458 - 28 Oct 2025
Viewed by 272
Abstract
This study investigates the performance degradation of X70 steel weld material in high-pressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments, including varying gas media (nitrogen, methane, hydrogen-blended), pressure conditions (0.1–10 [...] Read more.
This study investigates the performance degradation of X70 steel weld material in high-pressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments, including varying gas media (nitrogen, methane, hydrogen-blended), pressure conditions (0.1–10 MPa), and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests, combined with fracture morphology and microstructure analysis, reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses, including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment, while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 33891 KB  
Article
Influence of Substrate Preheating on Processing Dynamics and Microstructure of Alloy 718 Produced by Directed Energy Deposition Using a Laser Beam and Wire
by Atieh Sahraeidolatkhaneh, Achmad Ariaseta, Gökçe Aydin, Morgan Nilsen and Fredrik Sikström
Metals 2025, 15(11), 1184; https://doi.org/10.3390/met15111184 - 25 Oct 2025
Viewed by 312
Abstract
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer [...] Read more.
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer deposition due to heat accumulation. While prior studies have investigated interlayer temperature control and substrate preheating in DED modalities, including laser-powder and arc-based systems, the influence of substrate preheating in DED-LB/w has not been thoroughly examined. This study employs substrate preheating to simulate heat accumulation and assess its effects on melt pool geometry, wire–melt pool interaction, and the microstructural evolution of Alloy 718. Experimental results demonstrate that increased substrate temperatures lead to a gradual expansion of the melt pool, with a notable transition occurring beyond 400 °C. Microstructural analysis reveals that elevated preheat temperatures promote coarser secondary dendrite arm spacing and the development of wider columnar grains. Moreover, Nb-rich secondary phases, including the Laves phase, exhibit increased size but relatively unchanged area fractions. Observations from electrical conductance measurements and coaxial visual imaging show that preheat temperature significantly affects the process dynamics and microstructural evolution, providing a basis for advanced process control strategies. Full article
Show Figures

Figure 1

27 pages, 3329 KB  
Review
Bending Fatigue in Additively Manufactured Metals: A Review of Current Research and Future Directions
by Md Bahar Uddin, Sriram Praneeth Isanaka and Frank Liou
Crystals 2025, 15(11), 920; https://doi.org/10.3390/cryst15110920 - 25 Oct 2025
Viewed by 402
Abstract
Metal additive manufacturing (MAM), also referred to as 3D printing, has proven remarkable in the fabrication of complex metal components in multiple sectors. However, the assessment of this revolutionary process through bending fatigue is frequently impeded due to concerns about mechanical and physical [...] Read more.
Metal additive manufacturing (MAM), also referred to as 3D printing, has proven remarkable in the fabrication of complex metal components in multiple sectors. However, the assessment of this revolutionary process through bending fatigue is frequently impeded due to concerns about mechanical and physical conditions of the printed components. The unique layer-by-layer production process results in varied microstructures, anisotropy, and intrinsic defects that considerably differ from traditionally manufactured wrought metals. This review article aims to integrate and evaluate historical and contemporary research on the bending fatigue of additively manufactured materials. More specifically, the impact of process parameters, build orientation, surface conditions, and post-processing techniques such as machining, surface treatments, and polishing on bending fatigue performance are summarized. Adopting prediction methodologies is emphasized to facilitate flaw detection and thereby ensuring the safe and reliable deployment of AM parts in dynamic load carrying applications. Some future research directions are proposed, including the (i) the development of standardized specimens and test protocols, (ii) the adaptation to miniaturization to overcome challenges in high throughput fatigue testing, (iii) the application of emerging geometries such as the Krouse specimen for mechanistic investigations, and (iv) the possibility of developing a correlation across different testing methods and materials to reduce experimental burden. By synthesizing the recent progresses and identifying unresolved challenges, this review outlines an organized and clear pathway towards future research for the deployment of advanced bending fatigue characterization in AM process. The novel idea of adapting miniaturized Krouse geometries in the bending fatigue testing of additively manufactured metals is a viable prospect for the feasible fabrication of AM fatigue coupons with reduced specimen preparation defects and enhanced fatigue strength. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

23 pages, 5320 KB  
Article
Mechanical and Fatigue Performance of Recycled Concrete Aggregate Blended with Waste Tyre Rubber Stabilised with Slag for Pavement Application
by Fatima Juveria, Janitha Migunthanna, Pathmanathan Rajeev and Jay Sanjayan
Buildings 2025, 15(21), 3852; https://doi.org/10.3390/buildings15213852 - 24 Oct 2025
Viewed by 217
Abstract
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making [...] Read more.
Waste tyre rubber (TR) from end-of-life tyres poses a major environmental challenge. Therefore, recycling this waste into useful applications contributes to sustainable waste management strategies and supports a circular economy. Rubber possesses properties that can enhance the flexibility and ductility of pavements, making it a feasible material for use in road infrastructure. This study investigates the mechanical and fatigue performance of recycled concrete aggregates (RCA) mixed with waste TR. RCA was partially replaced at three different levels: 5%, 10% and 15% by weight. To mitigate the loss in mechanical strength associated with rubber inclusion, the TR + RCA mixes were stabilised through geopolymerisation using slag as a precursor. The unconfined compressive strength (UCS) increased with higher binder content. For instance, the mix containing 15% TR and stabilised with 5% slag geopolymer achieved a UCS of only 0.7 MPa, whereas increasing the binder content to 15% raised the UCS to 2.2 MPa. Similarly, resilient modulus improved with increasing slag content. Results from the four-point bending fatigue test showed that replacing RCA with rubber particles enhanced the fatigue performance of the mixes. The initial fatigue modulus of 100% RCA mix stabilised with 15% binder was 13,690 MPa, which reduced to 9740 MPa when 10% TR was introduced. In contrast, the number of cycles to reach half the initial modulus increased by four times when the TR content was raised from 0% to 15%. Microstructural observations of the slag-stabilised TR + RCA mixes showed improved microstructure due to geopolymerisation. Only insignificant traces of arsenic (<0.0008 mg/L) and barium (<0.000208 mg/L) were present in the TR + RCA mixes, while all other concerning heavy metals, including mercury and lead, were not detected in the leaching test. This indicates that there is no potential risk of soil or groundwater contamination, confirming the environmental safety of using slag geopolymer-stabilised TR + RCA mixes in subbase applications. Full article
(This article belongs to the Special Issue Analysis of Performance in Green Concrete Structures)
Show Figures

Figure 1

18 pages, 6792 KB  
Article
Microstructure, Mechanical and Tribological Properties of Cold Sprayed Fe-Based Metallic Glass Coatings
by Anna Góral, Anna Trelka-Druzic, Wojciech Żórawski, Łukasz Maj, Martin Vicen, Otakar Bokůvka, Paweł Petrzak and Grzegorz Garzeł
Materials 2025, 18(21), 4875; https://doi.org/10.3390/ma18214875 - 24 Oct 2025
Viewed by 331
Abstract
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without [...] Read more.
Iron-based metallic glasses are gaining increased interest due to their good glass-forming ability, high compressive strength, high corrosion resistance, catalytic properties, excellent soft magnetic properties, and relatively low cost. Cold spraying was successfully used to produce amorphous coatings from commercially available powder without any crystallization due to its high cooling rate and short processing time, minimizing thermal influences. Thick and dense amorphous coatings were obtained. The effect of a substrate on the microstructure, phase composition, microhardness, flexural strength, and wear behaviour of the coatings was investigated. The cold sprayed coatings revealed an almost complete amorphous structure and negligible porosity. The coating deposited on the steel substrate showed higher microhardness, better resistance to loose abrasive wear, and a slightly lower wear index tested in the coating and Si3N4 ball tribological association than that cold sprayed on an Al alloy. The force required to destroy the durability of the coating–steel substrate system estimated during three-point bending tests was also much higher. Both coatings were characterized by a comparable friction coefficient. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Properties of Metal Alloys)
Show Figures

Figure 1

Back to TopTop