Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = mesangial migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10325 KiB  
Article
DNA-Binding Protein A Is Actively Secreted in a Calcium-and Inflammasome-Dependent Manner and Negatively Influences Tubular Cell Survival
by Gregor Hoppstock, Jonathan A. Lindquist, Antonia Willems, Annika Becker, Charlotte Reichardt, Ronnie Morgenroth, Saskia Stolze, Cheng Zhu, Sabine Brandt and Peter R. Mertens
Cells 2024, 13(20), 1742; https://doi.org/10.3390/cells13201742 - 21 Oct 2024
Viewed by 1429
Abstract
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain (CSD) proteins that bind RNA/DNA and exert intracellular functions in cell stress, proliferation, and differentiation. Given the pattern of DbpA staining in inflammatory glomerular diseases, without adherence to cell boundaries, [...] Read more.
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain (CSD) proteins that bind RNA/DNA and exert intracellular functions in cell stress, proliferation, and differentiation. Given the pattern of DbpA staining in inflammatory glomerular diseases, without adherence to cell boundaries, we hypothesized extracellular protein occurrence and specific functions. Lipopolysaccharide and ionomycin induce DbpA expression and secretion from melanoma and mesangial cells. Unlike its homologue Y-box-binding protein 1 (YB-1), DbpA secretion requires inflammasome activation, as secretion is blocked upon the addition of a NOD-like receptor protein-3 (NLRP3) inhibitor. The addition of recombinant DbpA enhances melanoma cell proliferation, migration, and competes with tumor necrosis factor (TNF) binding to its receptor (TNFR1). In TNF-induced cell death assays, rDbpA initially blocks TNF-induced apoptosis, whereas at later time points (>24 h), cells are more prone to die. Given that CSD proteins YB-1 and DbpA fulfill the criteria of alarmins, we propose that their release signals an inherent danger to the host. Some data hint at an extracellular complex formation at a ratio of 10:1 (DbpA:YB-1) of both proteins. Full article
Show Figures

Figure 1

20 pages, 5135 KiB  
Article
Type IV Collagen and SOX9 Are Molecular Targets of BET Inhibition in Experimental Glomerulosclerosis
by José Luis Morgado-Pascual, Beatriz Suarez-Alvarez, Vanessa Marchant, Pamela Basantes, Pierre-Louis Tharaux, Alberto Ortiz, Carlos Lopez-Larrea, Marta Ruiz-Ortega and Sandra Rayego-Mateos
Int. J. Mol. Sci. 2023, 24(1), 486; https://doi.org/10.3390/ijms24010486 - 28 Dec 2022
Cited by 11 | Viewed by 3438
Abstract
Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among [...] Read more.
Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-β1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis. Full article
(This article belongs to the Special Issue Cellular and Molecular Research of Kidney Diseases)
Show Figures

Figure 1

19 pages, 2467 KiB  
Article
The Interplay of NEAT1 and miR-339-5p Influences on Mesangial Gene Expression and Function in Various Diabetic-Associated Injury Models
by Simone Reichelt-Wurm, Matthias Pregler, Tobias Wirtz, Markus Kretz, Kathrin Holler, Bernhard Banas and Miriam C. Banas
Non-Coding RNA 2022, 8(4), 52; https://doi.org/10.3390/ncrna8040052 - 13 Jul 2022
Cited by 6 | Viewed by 3610
Abstract
Mesangial cells (MCs), substantial cells for architecture and function of the glomerular tuft, take a key role in progression of diabetic kidney disease (DKD). Despite long standing researches and the need for novel therapies, the underlying regulatory mechanisms in MCs are elusive. This [...] Read more.
Mesangial cells (MCs), substantial cells for architecture and function of the glomerular tuft, take a key role in progression of diabetic kidney disease (DKD). Despite long standing researches and the need for novel therapies, the underlying regulatory mechanisms in MCs are elusive. This applies in particular to long non-coding RNAs (lncRNA) but also microRNAs (miRNAs). In this study, we investigated the expression of nuclear paraspeckle assembly transcript 1 (NEAT1), a highly conserved lncRNA, in several diabetes in-vitro models using human MCs. These cells were treated with high glucose, TGFβ, TNAα, thapsigargin, or tunicamycin. We analyzed the implication of NEAT1 silencing on mesangial cell migration, proliferation, and cell size as well as on mRNA and miRNA expression. Here, the miRNA hsa-miR-339-5p was not only identified as a potential interaction partner for NEAT1 but also for several coding genes. Furthermore, overexpression of hsa-miR-339-5p leads to a MC phenotype comparable to a NEAT1 knockdown. In-silico analyses also underline a relevant role of NEAT1 and hsa-miR-339-5p in mesangial physiology, especially in the context of DKD. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Graphical abstract

16 pages, 4895 KiB  
Article
Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice
by Foteini Moschovaki-Filippidou, Stefanie Steiger, Georg Lorenz, Christoph Schmaderer, Andrea Ribeiro, Ekaterina von Rauchhaupt, Clemens D. Cohen, Hans-Joachim Anders, Maja Lindenmeyer and Maciej Lech
Int. J. Mol. Sci. 2020, 21(19), 6978; https://doi.org/10.3390/ijms21196978 - 23 Sep 2020
Cited by 15 | Viewed by 3872
Abstract
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. [...] Read more.
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis. Full article
(This article belongs to the Special Issue Kidney Inflammation, Injury and Regeneration 2020)
Show Figures

Figure 1

19 pages, 2675 KiB  
Article
Urinary Neuropilin-1: A Predictive Biomarker for Renal Outcome in Lupus Nephritis
by Maria Teresa Torres-Salido, Mireia Sanchis, Cristina Solé, Teresa Moliné, Marta Vidal, Xavier Vidal, Anna Solà, Georgina Hotter, Josep Ordi-Ros and Josefina Cortés-Hernández
Int. J. Mol. Sci. 2019, 20(18), 4601; https://doi.org/10.3390/ijms20184601 - 17 Sep 2019
Cited by 26 | Viewed by 4368
Abstract
At present, Lupus Nephritis (LN) is still awaiting a biomarker to better monitor disease activity, guide clinical treatment, and predict a patient’s long-term outcome. In the last decade, novel biomarkers have been identified to monitor the disease, but none have been incorporated into [...] Read more.
At present, Lupus Nephritis (LN) is still awaiting a biomarker to better monitor disease activity, guide clinical treatment, and predict a patient’s long-term outcome. In the last decade, novel biomarkers have been identified to monitor the disease, but none have been incorporated into clinical practice. The transmembrane receptor neuropilin-1 (NRP-1) is highly expressed by mesangial cells and its genetic deletion results in proteinuric disease and glomerulosclerosis. NRP-1 is increased in kidney biopsies of LN. In this work we were interested in determining whether urinary NRP-1 levels could be a biomarker of clinical response in LN. Our results show that patients with active LN have increased levels of urinary NRP-1. When patients were divided according to clinical response, responders displayed higher urinary and tissue NRP-1 levels at the time of renal biopsy. Areas under the receiver operating characteristic curve, comparing baseline creatinine, proteinuria, urinary NRP-1, and VEGFA protein levels, showed NRP-1 to be an independent predictor for clinical response. In addition, in vitro studies suggest that NRP-1could promote renal recovery through endothelial proliferation and migration, mesangial migration and local T cell cytotoxicity. Based on these results, NRP-1 may be used as an early prognostic biomarker in LN. Full article
Show Figures

Graphical abstract

15 pages, 8456 KiB  
Article
Dietary Chrysin Suppresses Formation of Actin Cytoskeleton and Focal Adhesion in AGE-Exposed Mesangial Cells and Diabetic Kidney: Role of Autophagy
by Eun-Jung Lee, Min-Kyung Kang, Yun-Ho Kim, Dong Yeon Kim, Hyeongjoo Oh, Soo-Il Kim, Su Yeon Oh and Young-Hee Kang
Nutrients 2019, 11(1), 127; https://doi.org/10.3390/nu11010127 - 9 Jan 2019
Cited by 21 | Viewed by 6354
Abstract
Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and herbs [...] Read more.
Advanced glycation end products (AGE) play a causative role in the development of aberrant phenotypes of intraglomerular mesangial cells, contributing to acute/chronic glomerulonephritis. The aim of this study was to explore mechanistic effects of the flavonoid chrysin present in bee propolis and herbs on actin dynamics, focal adhesion, and the migration of AGE-exposed mesangial cells. The in vitro study cultured human mesangial cells exposed to 33 mM glucose and 100 μg/mL AGE-bovine serum albumin (AGE-BSA) for up to 5 days in the absence and presence of 1–20 μM chrysin. The in vivo study employed db/db mice orally administrated for 10 weeks with 10 mg/kg chrysin. The presence of ≥10 μM chrysin attenuated mesangial F-actin induction and bundle formation enhanced by AGE. Chrysin reduced the mesangial induction of α-smooth muscle actin (α-SMA) by glucose, and diminished the tissue α-SMA level in diabetic kidneys, indicating its blockade of mesangial proliferation. The treatment of chrysin inhibited the activation of vinculin and paxillin and the induction of cortactin, ARP2/3, fascin-1, and Ena/VASP-like protein in AGE-exposed mesangial cells. Oral administration of chrysin diminished tissue levels of cortactin and fascin-1 elevated in diabetic mouse kidneys. Mesangial cell motility was enhanced by AGE, which was markedly attenuated by adding chrysin to cells. On the other hand, chrysin dampened the induction of autophagy-related genes of beclin-1, LC3 I/II, Atg3, and Atg7 in mesangial cells exposed to AGE and in diabetic kidneys. Furthermore, chrysin reduced the mTOR activation in AGE-exposed mesangial cells and diabetic kidneys. The induction of mesangial F-actin, cortactin, and fascin-1 by AGE was deterred by the inhibition of autophagy and mTOR. Thus, chrysin may encumber diabetes-associated formation of actin bundling and focal adhesion and mesangial cell motility through disturbing autophagy and mTOR pathway. Full article
(This article belongs to the Special Issue Nutrients Intakes and Chronic Kidney Disease)
Show Figures

Figure 1

Back to TopTop