Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = medical decontamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 - 31 Jul 2025
Viewed by 260
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

29 pages, 7628 KiB  
Review
Fifty Years of Aflatoxin Research in Qidong, China: A Celebration of Team Science to Improve Public Health
by Jian-Guo Chen, Yuan-Rong Zhu, Geng-Sun Qian, Jin-Bing Wang, Jian-Hua Lu, Thomas W. Kensler, Lisa P. Jacobson, Alvaro Muñoz and John D. Groopman
Toxins 2025, 17(2), 79; https://doi.org/10.3390/toxins17020079 - 9 Feb 2025
Cited by 2 | Viewed by 1997
Abstract
The Qidong Liver Cancer Institute (QDLCI) and the Qidong Cancer Registry were established in 1972 with input from doctors, other medical practitioners, and non-medical investigators arriving from urban centers such as Shanghai and Nanjing. Medical teams were established to quantify the extent of [...] Read more.
The Qidong Liver Cancer Institute (QDLCI) and the Qidong Cancer Registry were established in 1972 with input from doctors, other medical practitioners, and non-medical investigators arriving from urban centers such as Shanghai and Nanjing. Medical teams were established to quantify the extent of primary liver cancer in Qidong, a corn-growing peninsula on the north side of the Yangtze River. High rates of liver cancer were documented and linked to several etiologic agents, including aflatoxins. Local corn, the primary dietary staple, was found to be consistently contaminated with high levels of aflatoxins, and bioassays using this corn established its carcinogenicity in ducks and rats. Observational studies noted a positive association between levels of aflatoxin in corn and incidence of liver cancer across townships. Biomarker studies measuring aflatoxin B1 and its metabolite aflatoxin M1 in biofluids reflected the exposures. Approaches to decontamination of corn from aflatoxins were also studied. In 1993, investigators from Johns Hopkins University were invited to visit the QDLCI to discuss chemoprevention studies in some townships. A series of placebo-controlled clinical trials were conducted using oltipraz (a repurposed drug), chlorophyllin (an over-the-counter drug), and beverages prepared from 3-day-old broccoli sprouts (rich in the precursor phytochemical for sulforaphane). Modulation of biomarkers of aflatoxin DNA and albumin adducts established proof of principle for the efficacy of these agents in enhancing aflatoxin detoxication. Serendipitously, by 2012, aflatoxin exposures quantified using biomarker measurements documented a many hundred-fold reduction. In turn, the Cancer Registry documents that the age-standardized incidence rate of liver cancer is now 75% lower than that seen in the 1970s. This reduction is seen in Qidongese who have never received the hepatitis B vaccination. Aflatoxin mitigation driven by economic changes switched the dietary staple of contaminated corn to rice coupled with subsequent dietary diversity leading to lower aflatoxin exposures. This 50-year effort to understand the etiology of liver cancer in Qidong provides the strongest evidence for aflatoxin mitigation as a public health strategy for reducing liver cancer burden in exposed, high-risk populations. Also highlighted are the challenges and successes of international team science to solve pressing public health issues. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 239 KiB  
Article
Profile of Bacteria Isolated from the Cell Phones of Health Care Providers in a Hospital Setting in Cameroon
by Nguemaïm Ngoufo Flore, Ghangha Jamin Ghangha and Kamga Fouamno Henri Lucien
Bacteria 2024, 3(4), 422-433; https://doi.org/10.3390/bacteria3040029 - 2 Dec 2024
Viewed by 1687
Abstract
Health care providers are an integral part of the era of mobile phones. During various activities linked to health care services, they come in contact with their cell phones regularly. These cell phones act as a perfect substrate for nosocomial pathogens, especially in [...] Read more.
Health care providers are an integral part of the era of mobile phones. During various activities linked to health care services, they come in contact with their cell phones regularly. These cell phones act as a perfect substrate for nosocomial pathogens, especially in hot–humid conditions, and may serve as a vehicle in transmitting nosocomial infections. This study aimed at determining the profile of bacteria isolated from the cell phones of healthcare providers. A descriptive cross-sectional study was carried out from 1 April to 3 June 2023, where 115 swab samples were collected from the cell phones of health care providers (laboratory personnel, nurses/midwives and doctors) at the Regional Hospital Bamenda. These swabs were inoculated on blood, chocolate and Mac Conkey plates, and the bacteria were identified according to standard microbiological methods and biochemical tests to the genus/specie level. Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 23. The results were presented in frequencies and proportions. The chi square test was used to compare proportions between variables, and the results were considered statistically significant when p < 0.05. The bacteria isolated from these cell phones included coagulase-negative Staphylococci (CoNS), Staphylococcus aureus, Streptococcus species, Pseudomonas aeroginosa, Escherichia coli, Bacillus species and Neisseria species. All the cell phones of the laboratory personnel were contaminated, followed by those of the nurses/midwives (38; 33.0%) and, lastly, by those of the medical doctors (24; 20.9%). No statistically significant difference was observed between the three categories of health care providers with respect to the presence or absence of bacteria on their cell phones. This study presented that the mobile phones of health care providers are a risk of nosocomial pathogens. The result implies that there is an urgent need to implement and emphasize strategies such as hand washing and decontamination of mobile phones to limit nosocomial infections in the hospital. Full article
17 pages, 4244 KiB  
Article
Plasma Surface Modification of the Inner Wall of Montgomery’s Tracheal Implant (T-Tube)
by Konstantin G. Kostov, Ananias A. Barbosa, Fellype do Nascimento, Paulo F. G. Cardoso, Ana C. P. L. Almeida, Antje Quade, Daniel Legendre, Luiz R. O. Hein, Diego M. Silva and Cristiane Y. Koga-Ito
Polymers 2024, 16(22), 3223; https://doi.org/10.3390/polym16223223 - 20 Nov 2024
Viewed by 1259
Abstract
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged [...] Read more.
Tracheal stenosis (i.e., the abnormal narrowing of the trachea) can occur due to a variety of inflammatory and infectious processes as well as due to therapeutic procedures undertaken by the patient. The most common cause of tracheal obstruction in patients has been prolonged intubation. Depending on the extent of the stenosis and its exact location, the surgical insertion of a tracheal stent is the only option for addressing this issue. The Montgomery T-tube implant is a valuable tracheal stent made from medical-grade silicone that provides a functional airway while supporting the tracheal mucosa. However, its performance is subject to gradual deterioration due to biofilm colonization of the stent’s inner wall, which may explain the discomfort claimed by many patients and clinical failures. Recently, cold atmospheric plasmas (CAPs) have emerged as an alternative technology to many conventional medical procedures, such as wound healing, skin treatment, decontamination of medical devices, etc. Here, we report on plasma-induced surface modification of the inner wall of a T-tube implant, considering future biomedical applications. To generate the plasma, we employed a cold atmospheric pressure plasma jet in gas helium, which was directly inserted into the T-tube implant. To assess the treatment uniformity, the degree of surface modification and its extension along the stent’s inner wall was analyzed using different process parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 10151 KiB  
Article
Application of Different Waveforms of Pulsed Current in the Classical Electro-Cocatalytic Process for Effective Removal of Sulfamethoxazole: Oxidation Mechanisms
by Jingkai Fang, Yongjian Wang, Jiahao Wang, Igor Ying Zhang and Rongfu Huang
Catalysts 2024, 14(8), 532; https://doi.org/10.3390/catal14080532 - 16 Aug 2024
Cited by 1 | Viewed by 1360
Abstract
In this study, sulfamethoxazole (SMX) was applied as the model pollutant to assess the performance of pulsed current (PC) waveforms in the decontamination efficiency of the PC/peroxymonosulfate (PMS)/Fe(III) process and to investigate underlying oxidation mechanisms. Among the various waveforms tested, the sinusoidal wave [...] Read more.
In this study, sulfamethoxazole (SMX) was applied as the model pollutant to assess the performance of pulsed current (PC) waveforms in the decontamination efficiency of the PC/peroxymonosulfate (PMS)/Fe(III) process and to investigate underlying oxidation mechanisms. Among the various waveforms tested, the sinusoidal wave (SIN), combined with the Dimensionally Stable Anode (DSA) electrode, demonstrated superior degradation performance, with the order being SIN > ramp > square > direct current (DC). The operational conditions for the SIN/PMS/Fe(III) system were optimized to an initial pH of 3, a voltage of 6 V, 0.6 mmol/L of Fe3+, 1.0 mmol/L of PMS, and a frequency of 1 kHz. The results of quenching and probe experiments confirmed the generation of abundant reactive radicals such as OH, SO4•−, O2•−, Fe(IV), and 1O2 in the SIN/PMS/Fe(III) process, which collectively enhanced the degradation of SMX. Additionally, results of high-resolution mass spectrometry analysis were employed to identify the SMX oxidation byproducts, and the toxicity of SMX byproducts was evaluated. Overall, the SIN/PMS/Fe(III) process exhibits effective degradation capacity with high energy efficiency, establishing itself as an effective strategy for the practical treatment of medical wastewater. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

24 pages, 6321 KiB  
Article
Decontamination Effect of Hypochlorous Acid Dry Mist on Selected Bacteria, Viruses, Spores, and Fungi as Well as on Components of Electronic Systems
by Barbara Nasiłowska, Maksymilian Włodarski, Miron Kaliszewski, Zdzisław Bogdanowicz, Łukasz Krzowski, Krzysztof Kopczyński, Grzegorz Witkowski, Agnieszka Czeczott-Urban, Aneta Bombalska, Magdalena Urbańska, Katarzyna Garbat, Aleksandra Sowińska, Marta Kutwin, Wojciech Koperski, Ryszard Woźniak and Zygmunt Mierczyk
Int. J. Mol. Sci. 2024, 25(13), 7198; https://doi.org/10.3390/ijms25137198 - 29 Jun 2024
Cited by 4 | Viewed by 3146
Abstract
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous [...] Read more.
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

24 pages, 21769 KiB  
Article
Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O
by Maya Margaritova Zaharieva, Pelagia Foka, Eirini Karamichali, Alexander Dimitrov Kroumov, Stanislav Philipov, Yana Ilieva, Tanya Chan Kim, Petar Podlesniy, Yordan Manasiev, Vesselin Kussovski, Urania Georgopoulou and Hristo Miladinov Najdenski
Viruses 2024, 16(1), 48; https://doi.org/10.3390/v16010048 - 27 Dec 2023
Cited by 5 | Viewed by 2274
Abstract
Coronaviruses (CoVs) belong to the group of enveloped positive-sense single-strand RNA viruses and are causative agents of respiratory, gastro-intestinal, and central nervous systems diseases in many host species, i.e., birds, mammals, and humans. Beta-CoVs revealed a great potential to cross the barrier between [...] Read more.
Coronaviruses (CoVs) belong to the group of enveloped positive-sense single-strand RNA viruses and are causative agents of respiratory, gastro-intestinal, and central nervous systems diseases in many host species, i.e., birds, mammals, and humans. Beta-CoVs revealed a great potential to cross the barrier between species by causing three epidemics/pandemics among humans in the 21st century. Considering the urgent need for powerful antiviral agents for decontamination, prevention, and treatment of BCoV infections, we turned our attention to the possibility of photodynamic inactivation with photosensitizers in combination with light irradiation. In the present study, we evaluated, for the first time, the antiviral activity of toluidine blue O (TBO) against Beta-coronavirus 1 (BCoV) in comparison to methylene blue (MB). First, we determined the in vitro cytotoxicity of MB and TBO on the Madin–Darby bovine kidney (MDBK) cell line with ISO10993-5/Annex C. Thereafter, BCoV was propagated in MDBK cells, and the virus titer was measured with digital droplet PCR, TCID50 assay and plaque assay. The antiviral activity of non-toxic concentrations of TBO was estimated using the direct inactivation approach. All effects were calculated in MAPLE 15® mathematical software by developing programs for non-linear modeling and response surface analysis. The median inhibitory concentration (IC50) of TBO after 72 h of incubation in MDBK cells was 0.85 µM. The antiviral activity of TBO after the direct inactivation of BCoV (MOI = 1) was significantly stronger than that of MB. The median effective concentration (EC50) of TBO was 0.005 µM. The cytopathic effect decreased in a concentration-dependent manner, from 0.0025 to 0.01 µM, and disappeared fully at concentrations between 0.02 and 0.3 µM of TBO. The number of virus particles also decreased, depending on the concentration applied, as proven by ddPCR analysis. In conclusion, TBO exhibits significant potential for direct inactivation of BCoV in vitro, with a very high selectivity index, and should be subjected to further investigation, aiming at its application in veterinary and/or human medical practice. Full article
(This article belongs to the Special Issue Animal Coronaviruses: Infection, Prevention, and Antivirals)
Show Figures

Figure 1

9 pages, 280 KiB  
Review
Treatment of Hyperammonemia Syndrome in Lung Transplant Recipients
by Sarah Yun, Ciana Scalia and Sara Farghaly
J. Clin. Med. 2023, 12(22), 6975; https://doi.org/10.3390/jcm12226975 - 8 Nov 2023
Cited by 2 | Viewed by 2961
Abstract
Hyperammonemia syndrome is a complication that has been reported to occur in 1–4% of lung transplant patients with mortality rates as high as 60–80%, making detection and management crucial components of post-transplant care. Patients are treated with a multimodal strategy that may include [...] Read more.
Hyperammonemia syndrome is a complication that has been reported to occur in 1–4% of lung transplant patients with mortality rates as high as 60–80%, making detection and management crucial components of post-transplant care. Patients are treated with a multimodal strategy that may include renal replacement therapy, bowel decontamination, supplementation of urea cycle intermediates, nitrogen scavengers, antibiotics against Mollicutes, protein restriction, and restriction of parenteral nutrition. In this review we provide a framework of pharmacologic mechanisms, medication doses, adverse effects, and available evidence for commonly used treatments to consider when initiating therapy. In the absence of evidence for individual strategies and conclusive knowledge of the causes of hyperammonemia syndrome, clinicians should continue to design multimodal regimens based on suspected etiologies, institutional drug availability, patient ability to tolerate enteral medications and nutrition, and availability of intravenous access. Full article
(This article belongs to the Special Issue Current Status and Future Trends in Lung Transplantation)
15 pages, 2441 KiB  
Article
Real-Time Monitoring of H2O2 Sterilization on Individual Bacillus atrophaeus Spores by Optical Sensing with Trapping Raman Spectroscopy
by Morten Bertz, Denise Molinnus, Michael J. Schöning and Takayuki Homma
Chemosensors 2023, 11(8), 445; https://doi.org/10.3390/chemosensors11080445 - 10 Aug 2023
Cited by 4 | Viewed by 3466
Abstract
Hydrogen peroxide (H2O2), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H2O2, bacterial spores are common microbial systems due to [...] Read more.
Hydrogen peroxide (H2O2), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H2O2, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H2O2. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H2O2 shows that the formation of reactive oxygen species from H2O2 is the rate-limiting factor of oxidative spore death. Full article
Show Figures

Figure 1

9 pages, 1679 KiB  
Article
Disinfection of Transparent Screens by Side-Coupled UVA LED Radiation
by Ben Sicks, Anna-Maria Gierke, Florian Sommerfeld, Martin Klein and Martin Hessling
Optics 2023, 4(2), 321-329; https://doi.org/10.3390/opt4020023 - 15 May 2023
Cited by 5 | Viewed by 1802
Abstract
(1) Background: Applications using touch screens are increasingly deployed in medical facilities, as well as in public areas. When touching the display with fingers, potentially pathogenic microorganisms such as methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted. An automated process to decontaminate the device [...] Read more.
(1) Background: Applications using touch screens are increasingly deployed in medical facilities, as well as in public areas. When touching the display with fingers, potentially pathogenic microorganisms such as methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted. An automated process to decontaminate the device in between users would be highly useful. (2) Methods: Thin glass plates were superficially contaminated with the non-pathogenic Staphylococcus carnosus in a controlled manner. Subsequently, UVA radiation of 400 or 380 nm was laterally coupled into the glass plate, which acted as a light guide. Contact agar plates recorded the change in the staphylococci concentration over time. Additionally, the UVA radiation emitted by the glass plates was measured and the potential risk to humans assessed. (3) Results: Staphylococci concentration decreased as a result of UVA radiation for both wavelengths. At 400 nm, it took about 7.5 h and at 380 nm about 1 h until a reduction of 90% was reached. To meet higher disinfection requirements, disproportionately longer irradiation times were necessary. The potential UVA irradiation of humans in front of the glass pane was about 35 µW/cm2 or less and posed no risk to humans. (4) Conclusions: Side-coupled UVA radiation is in principle capable of safely automatically disinfecting microorganisms on touch screens. However, the required irradiation times are still in the hour range, so that a rapid disinfection within a minute or less is not yet possible with the presented setup. However, higher UVA intensities might reduce the current disinfection durations. Full article
(This article belongs to the Section Biomedical Optics)
Show Figures

Figure 1

11 pages, 1011 KiB  
Article
Short-Wave Ultraviolet-Light-Based Disinfection of Surface Environment Using Light-Emitting Diodes: A New Approach to Prevent Health-Care-Associated Infections
by Helena Duering, Thomas Westerhoff, Frank Kipp and Claudia Stein
Microorganisms 2023, 11(2), 386; https://doi.org/10.3390/microorganisms11020386 - 2 Feb 2023
Cited by 19 | Viewed by 3863
Abstract
Ultraviolet (UV)-C irradiation is a promising method for microbial eradication on surfaces. Major developments have taken place in UV-C light-emitting diodes (LEDs) technology. In this study, we examined the suitability of UV-C LED-based surface disinfection in hospitals. We tested the efficacy of UV-C [...] Read more.
Ultraviolet (UV)-C irradiation is a promising method for microbial eradication on surfaces. Major developments have taken place in UV-C light-emitting diodes (LEDs) technology. In this study, we examined the suitability of UV-C LED-based surface disinfection in hospitals. We tested the efficacy of UV-C LED surface treatment on different microorganisms dried on a carrier surface or in a liquid solution. The influences of soiling, shading, surface material, radiation wavelength, microbial load and species on the disinfection performance were investigated. UV-C LED caused a reduction of >5 log10 levels of E. coli, S. aureus and C. albicans, whereas 3 log10 reduction was observed for G. stearothermophilus spores. The components of the medium led to a reduced UV-C LED efficiency compared to buffered solutions. We observed that the microbial load and the roughness of the carrier surface had a major influence on the UV-C LED disinfection efficiencies, whereas shading had no impact on inactivation. This study showed that UV-C is suitable for surface disinfection, but only under certain conditions. We showed that the main factors influencing microbial inactivation through UV-C light (e.g., intrinsic and extrinsic factors) had a similar impact when using a UV-C LED radiation source compared to a conventional UV-C lamp. However, the potential of LEDs is contributed by their adjustable wavelength and customizable geometry for the decontamination of medical devices and surfaces, and thereby their ability to overcome shading effects. Full article
(This article belongs to the Special Issue Research in Hospital Infection Control 2.0)
Show Figures

Figure 1

18 pages, 3752 KiB  
Article
Extending the Protection Ability and Life Cycle of Medical Masks through the Washing Process
by Julija Volmajer Valh, Tanja Pušić, Mirjana Čurlin and Ana Knežević
Materials 2023, 16(3), 1247; https://doi.org/10.3390/ma16031247 - 1 Feb 2023
Cited by 1 | Viewed by 2254
Abstract
The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of [...] Read more.
The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of polypropylene medical masks by varying the washing procedure, bath composition, disinfectant agent, and number of washing cycles as a basis for reusability. The barrier properties of the medical mask were analyzed before and after the first and fifth washing cycle indirectly by measuring the contact angle of the liquid droplets with the front and back surface of the mask, further by measuring air permeability and determining antimicrobial resistance. Additional analysis included FTIR, pH of the material surface and aqueous extract, as well as the determination of residual substances—surfactants—in the aqueous extract of washed versus unwashed medical masks, while their aesthetic aspect was examined by measuring their spectral characteristics. The results showed that household washing had a stronger impact on the change of some functional properties, primarily air permeability, than laboratory washing. The addition of the disinfectant agent, didecyldimethylammonium chloride, contributes to the protective ability and supports the idea that washing of medical masks under controlled conditions can preserve barrier properties and enable reusability. Full article
Show Figures

Figure 1

14 pages, 4031 KiB  
Article
Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet
by Michał Kwiatkowski, Piotr Terebun, Katarína Kučerová, Barbora Tarabová, Zuzana Kovalová, Aleksandra Lavrikova, Zdenko Machala, Karol Hensel and Joanna Pawłat
Materials 2023, 16(3), 1167; https://doi.org/10.3390/ma16031167 - 30 Jan 2023
Cited by 6 | Viewed by 2945
Abstract
In the technological processes requiring mild treatment, such as soft materials processing or medical applications, an important role is played by non-equilibrium plasma reactors with dielectric barrier discharge (DBD), that when generated in noble gases allows for the effective treatment of biological material [...] Read more.
In the technological processes requiring mild treatment, such as soft materials processing or medical applications, an important role is played by non-equilibrium plasma reactors with dielectric barrier discharge (DBD), that when generated in noble gases allows for the effective treatment of biological material at a low temperature. The aim of this study is to determine the operating parameters of an atmospheric pressure, radio-frequency DBD plasma jet reactor for the precise treatment of biological materials. The tested parameters were the shape of the discharge (its length and volume), current and voltage signals, as well as the power consumed by the reactor for various composition and flow rates of the working gas. To determine the applicability in medicine, the temperature, pH, concentrations of H2O2, NO2 and NO3 and Escherichia coli log reduction in the plasma treated liquids were determined. The obtained results show that for certain operating parameters, a narrow shape of plasma stream can generate significant amounts of H2O2, allowing for the mild decontamination of bacteria at a relatively low power of the system, safe for the treatment of biological materials. Full article
Show Figures

Figure 1

17 pages, 989 KiB  
Review
Pathogenic Drug Resistant Fungi: A Review of Mitigation Strategies
by Mary Garvey and Neil J. Rowan
Int. J. Mol. Sci. 2023, 24(2), 1584; https://doi.org/10.3390/ijms24021584 - 13 Jan 2023
Cited by 37 | Viewed by 4872
Abstract
Fungal pathogens cause significant human morbidity and mortality globally, where there is a propensity to infect vulnerable people such as the immunocompromised ones. There is increasing evidence of resistance to antifungal drugs, which has significant implications for cutaneous, invasive and bloodstream infections. The [...] Read more.
Fungal pathogens cause significant human morbidity and mortality globally, where there is a propensity to infect vulnerable people such as the immunocompromised ones. There is increasing evidence of resistance to antifungal drugs, which has significant implications for cutaneous, invasive and bloodstream infections. The World Health Organization (WHO) published a priority list of fungal pathogens in October 2022, thus, highlighting that a crisis point has been reached where there is a pressing need to address the solutions. This review provides a timely insight into the challenges and implications on the topic of antifungal drug resistance along with discussing the effectiveness of established disease mitigation modalities and approaches. There is also a need to elucidate the cellular and molecular mechanisms of fungal resistance to inform effective solutions. The established fungal decontamination approaches are effective for medical device processing and sterilization, but the presence of pathogenic fungi in recalcitrant biofilms can lead to challenges, particularly during cleaning. Future design ideas for implantable and reusable medical devices should consider antifungal materials and appropriates for disinfection, and where it is relevant, sterilization. Preventing the growth of mycotoxin-producing fungi on foods through the use of appropriate end-to-end processes is advisable, as mycotoxins are recalcitrant and challenging to eliminate once they have formed. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 6726 KiB  
Article
Effect of H2O2 @CuONPs in the UV Light-Induced Removal of Organic Pollutant Congo Red Dye: Investigation into Mechanism with Additional Biomedical Study
by Salman Latif, Fahad Abdulaziz, Abdulaziz M. Alanazi, Amal H. Alsehli, Marwah M. Alsowayigh and Abdulaziz A. Alanazi
Molecules 2023, 28(1), 410; https://doi.org/10.3390/molecules28010410 - 3 Jan 2023
Cited by 9 | Viewed by 2362
Abstract
Hazardous dyes in industrial wastewater are an internationally recognized issue for community health. Nanoparticles synthesized through green protocols are a fascinating research field with numerous applications. The current study mainly aimed to investigate the degradation of Congo red (CR) dye under UV light [...] Read more.
Hazardous dyes in industrial wastewater are an internationally recognized issue for community health. Nanoparticles synthesized through green protocols are a fascinating research field with numerous applications. The current study mainly aimed to investigate the degradation of Congo red (CR) dye under UV light in the presence of H2O2 and the photocatalytic activity of copper oxide nanoparticles (CuONPs). For CuONP formation, Citrus maxima extract contains a high number of phytochemical constituents. The size of CuONPs ranges between 25 and 90 nm. The photocatalytic activity of CuONPs with the addition of H2O2 was observed and analyzed under UV light to eliminate CR dye. The UV light caused the decomposition of H2O2, which produced ·OH radicals. The results revealed a significant increment in dye degradation during the presence of H2O2. The effect of concentration on the degradation of the CR dye was also studied. The degradation pathway of organic pollutants was reputable from the hydroxy radical medicated degradation of CR. Advanced Oxidation Treatment depends on the in situ production of reactive ·OH species and is presented as the most effective procedure for decontamination. The biological activity of CuONPs was evaluated against Escherichia coli Bacillus subtillis, Staphylococcus aureus, Shigella flexenari, Acinetobacter Klebsiella pneumonia, Salmonella typhi and Micrococcus luteus. The newly synthesised nanomaterials showed strong inhibition activity against Escherichia coli (45%), Bacillus subtilis (42%) and Acinetobacter species (25%). The activity of CuONPs was also investigated against different fungus species such as: Aspergillus flavus, A. niger, Candida glabrata, T. longifusus, M. Canis, C. glabrata and showed a good inhibition zone against Candida glabrata 75%, Aspergillus flavus 68%, T. longifusus 60%. The materials showed good activity against C. glaberata, A. flavus and T. longifusus. Furthermore, CuONPs were tested for antioxidant properties using 2, 2 diphenyl-1-picrylhydrazyl) (DPPH). Full article
Show Figures

Figure 1

Back to TopTop