Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = massive sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5336 KiB  
Article
Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks
by Haitham M. Ahmed and Essam B. Moustafa
Geosciences 2025, 15(7), 263; https://doi.org/10.3390/geosciences15070263 - 8 Jul 2025
Viewed by 241
Abstract
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties [...] Read more.
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties (P-wave velocity and density). In the massive sulfide zones, there are three distinctive zones of mineralization, each exhibiting varying degrees of pyritization: the intense pyritization zone (formerly Zone A) exhibited extensive pyrite replacement of sphalerite and chalcopyrite, the transitional zone (Zone B) displays intergrowths of pyrite and sphalerite, and the coarse sulfide zone (Zone C) features coarser, less altered sulfides—polyphase hydrothermal alteration, including sericitization, silicification, and amphibole veining. Mineralized rocks showed a 35.18% increase in density (3.65 ± 0.17 kg/m3 vs. 2.72 ± 0.014 kg/m3) attributed to dense sulfide content. The flexural strength more than doubled (99.02 ± 4.42 GPa vs. 43.17 ± 6.45 GPa), experiencing a 129% increase, due to homogeneous chalcopyrite distribution and fine-grained sulfide networks. Despite strength differences, deflection rates showed a non-significant 4% variation (0.373 ± 0.083 mm for mineralized vs. 0.389 ± 0.074 mm for metamorphic rocks), indicating comparable ductility. Full article
Show Figures

Figure 1

20 pages, 7353 KiB  
Reply
Early Cretaceous Zn-Pb (Ba±Ag±Cu±Fe±Mn) Deposits of Iran: Irish Type or Mississippi Valley Type? Reply to Nejadhadad et al. Comment on “Rajabi et al. Barite Replacement as a Key Factor in the Genesis of Sediment-Hosted Zn-Pb±Ba and Barite-Sulfide Deposits: Ore Fluids and Isotope (S and Sr) Signatures from Sediment-Hosted Zn-Pb±Ba Deposits of Iran. Minerals 2024, 14, 671”
by Abdorrahman Rajabi, Pouria Mahmoodi, Pura Alfonso, Carles Canet, Colin J. Andrew, Reza Nozaem, Saeideh Azhdari, Somaye Rezaei, Zahra Alaminia, Somaye Tamarzadeh, Ali Yarmohammadi, Ghazaleh Khan Mohammadi, Negin Kourangi and Rasoul Saeidi
Minerals 2025, 15(6), 635; https://doi.org/10.3390/min15060635 - 11 Jun 2025
Viewed by 639
Abstract
This study critically examines the early Cretaceous carbonate-hosted Zn-Pb (±Ba±Cu) deposits of the Malayer-Esfahan (MEMB) and Yazd-Anarak (YAMB) metallogenic belts in Iran, which have been inaccurately classified as Mississippi Valley type (MVT) deposits by Nejadhadad et al. (2025). Our findings reveal significant differences [...] Read more.
This study critically examines the early Cretaceous carbonate-hosted Zn-Pb (±Ba±Cu) deposits of the Malayer-Esfahan (MEMB) and Yazd-Anarak (YAMB) metallogenic belts in Iran, which have been inaccurately classified as Mississippi Valley type (MVT) deposits by Nejadhadad et al. (2025). Our findings reveal significant differences in mineralogy, fluid inclusion characteristics, and geochemical signatures compared to typical MVT deposits. These deposits are more akin to Irish-type Zn-Pb mineralization and formed in extensional and passive margin environments around the Nain–Baft back-arc basin. The normal faults in this back-arc rift can transform significantly during inversion and compressional tectonics, reactivating to behave as reverse faults and leading to new geological structures and landscapes. Our study highlights barite replacement as a crucial factor in forming sediment-hosted Zn-Pb (±Ba±Cu) and barite-sulfide deposits. Based on textural evidence, fluid inclusion data, and sulfur isotope analyses, we propose that barite plays a fundamental role in controlling subsequent Zn-Pb (±Ba±Cu) mineralization by serving as both a favorable host and a significant sulfur source. Furthermore, diagenetic barite may act as a precursor to diverse types of sediment-hosted Zn-Pb (±Ba±Cu) mineralization, refining genetic models for these deposits. Sulfur isotope analyses of Irish-type deposits show a broad δ34S range (−28‰ to +5‰), indicative of bacterial sulfate reduction (BSR). Nevertheless, more positive δ34S values (+1‰ to +36‰) and textural evidence in shale-hosted massive sulfide (SHMS) deposits suggest a greater role for thermochemical sulfate reduction (TSR) in sulfide mineralization. Full article
Show Figures

Graphical abstract

28 pages, 2017 KiB  
Article
Valorization Diagnosis of Roasted Pyrite Ashes Wastes from the Iberian Pyrite Belt
by Juan Antonio Ramírez-Pérez, Manuel Jesús Gázquez-González and Juan Pedro Bolívar
Recycling 2025, 10(3), 112; https://doi.org/10.3390/recycling10030112 - 4 Jun 2025
Viewed by 1534
Abstract
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this [...] Read more.
The Iberian Pyrite Belt (IPB) contains the world’s largest massive sulfide deposit, and, due to extensive mining developed during the last 200 years, large amounts of mining waste have been abandoned in this area, with roasted pyrite ash being the focus of this study. Polymetallic mining is also classified as a NORM (naturally occurring radioactive material) activity, thus the main objective of this work was to develop a radiological and physicochemical characterization of this waste (mineral phases, elemental and radionuclide concentrations) in order to perform a valorization diagnosis of this material. The composition of this waste strongly depends on its origin (mine), and is mainly formed by iron oxides (hematite, Fe₂O₃) and heavy metals and metalloids such as As, Pb, Zn, and Cu, in levels 2–4 orders of magnitude higher than those of undisturbed soils, depending on each particular element. However, the average natural radionuclide levels are similar to those of unperturbed soils (around 30 Bqkg−1 of 238U-series, 50 Bqkg−1 of 232Th, and 70 Bqkg−1 for 40K), thus they are below the limits established by European Union regulations to require radiological control during their future valorization. As the main potential applications of roasted pyrite ash, the valorization diagnosis indicates that it can be used as a source of Fe (FeCl₃ or FeSO₄), or an additive in the manufacturing of cements, pigments, etc. Full article
Show Figures

Figure 1

24 pages, 13891 KiB  
Article
Fertility of Gabbroic Intrusions in the Paleoproterozoic Lynn Lake Greenstone Belt, Manitoba, Canada: Insights from Field Relationships, Geochemical and Metallogenic Characteristics
by Xue-Ming Yang
Minerals 2025, 15(5), 448; https://doi.org/10.3390/min15050448 - 26 Apr 2025
Viewed by 617
Abstract
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen [...] Read more.
Magmatic nickel–copper–platinum group element (PGE) deposits hosted in mafic–ultramafic intrusions within volcanic arc systems are highly attractive targets for mineral exploration, yet their genesis remains poorly understood. This study investigates metagabbroic intrusions in the Paleoproterozoic Lynn Lake greenstone belt of the Trans-Hudson Orogen to identify the key factors, in the original gabbros, that control the formation of magmatic Ni-Cu-PGE deposits in volcanic arc systems. By examining the field relationships, geochemical and sulfur and oxygen stable isotope compositions, mineralogy, and structural fabrics, this study aims to explain why some intrusions host mineralization (e.g., Lynn Lake and Fraser Lake intrusions), whereas others remain barren (e.g., Ralph Lake, Cartwright Lake, and Snake Lake intrusions). Although both the fertile and barren gabbroic, likewise original, intrusions exhibit metaluminous, tholeiitic to calc-alkaline affinity with volcanic arc geochemical signatures, they differ significantly in shape, ranging from vertical and tube-like to tabular forms, reflecting distinct geological settings and magma dynamics. The gabbroic rocks of fertile intrusions exhibit erratic trace element profiles, lower (Nb/Th)N and higher (Cu/Zr)N ratios, as well as a larger range of δ34S values than those in barren intrusions. Key factors influencing Ni-Cu-PGE mineralization include the degree of partial melting of the mantle, early sulfide segregation, and crustal contamination, particularly from volcanogenic massive sulfide deposits. These processes likely triggered sulfide saturation in the mafic magmas. Geochemical proxies, such as PGE concentrations and sulfur and oxygen stable isotopes, provide critical insights into these controlling factors. The results of this study enhance our understanding of the metallogenic processes responsible for the formation of magmatic Ni-Cu-PGE deposits in the gabbroic intrusions emplaced in an extensional setting due to slab rollback, during the geological evolution of the Lynn Lake greenstone belt, offering valuable guidance for mineral exploration efforts. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

28 pages, 17232 KiB  
Article
Mafic VMS Mineralization in the Mesozoic Metavolcanic Rocks of the Evros Ophiolite, Xylagani Area, Greece
by Vasilios Melfos, Panagiotis Voudouris, Grigorios-Aarne Sakellaris, Christos L. Stergiou, Margarita Melfou, Eftychia Peristeridou, Lambrini Papadopoulou, Jaroslav Pršek and Anestis Filippidis
Minerals 2025, 15(4), 420; https://doi.org/10.3390/min15040420 - 17 Apr 2025
Viewed by 628
Abstract
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. [...] Read more.
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. The protolith of the host rock is basalt that has a boninitic-to-low-Ti tholeiitic composition and was formed in an intra-oceanic supra-subduction zone within a juvenile forearc-to-volcanic arc setting. The volcanic rocks were subjected to ocean-floor metamorphism at very low-grade prehnite–pumpellyite facies and low-grade greenschist facies at temperatures of up to 360 °C and pressures between 1 and 4 kbar. The mineralization shows typical features of a stratabound–stratiform deposit and occurs as silicified lenses and layers with disseminated and massive sulfides and gold. Based on host rock composition, geotectonic setting, and base metal content, the mineralization at Xylagani is classified as a Cu-rich mafic volcanic-associated deposit, i.e., Cyprus-type VMS (volcanogenic massive sulfide). The mineralization consists of pyrite, chalcopyrite, gold, pyrrhotite, sphalerite, galena, and tennantite-(Zn). It was formed at a subseafloor setting where hydrothermal fluids circulated through the host volcanic rocks, resulting in a pervasive alteration (silicification and chloritization) and the development of a replacement VMS deposit. The very low-to-low-grade orogenic metamorphism and related deformation during the Alpine collision in the Middle Jurassic to Early Cretaceous periods remobilized the mineralization and formed milky quartz veins with rare sulfides, crosscutting the metavolcanic rocks. Full article
(This article belongs to the Special Issue Ore Deposits Related to Metamorphism)
Show Figures

Figure 1

14 pages, 9585 KiB  
Article
The Small-Scale Fluid Heterogeneity in the Tongguan Hydrothermal Field (27.1° S, Mid-Atlantic Ridge): Evidence from Mineralogical and Sulfur Isotope Study of the Hydrothermal Sulfide
by Bing Li, Xuefa Shi, Chuanshun Li, Sai Wang, Quanshu Yan, Jun Ye, Yuan Dang and Xisheng Fang
Minerals 2025, 15(3), 264; https://doi.org/10.3390/min15030264 - 3 Mar 2025
Viewed by 561
Abstract
Hydrothermal activity on the modern seafloor varies depending on the tectonic setting. In particular, the neovolcanic zones (NVZs) along mid-ocean ridges, where magmatism is intense, generally host high-temperature hydrothermal activities. These high-temperature hydrothermal activities on the NVZs can promote the development of many [...] Read more.
Hydrothermal activity on the modern seafloor varies depending on the tectonic setting. In particular, the neovolcanic zones (NVZs) along mid-ocean ridges, where magmatism is intense, generally host high-temperature hydrothermal activities. These high-temperature hydrothermal activities on the NVZs can promote the development of many polymetallic sulfide deposits. Currently, many high-temperature hydrothermal activities and sulfide accumulations have been discovered on the NVZs of major mid-ocean ridges worldwide, but relatively few have been found in the Southern Mid-Atlantic Ridge (SMAR), which limits our understanding of the hydrothermal mineralization characteristics on the NVZs of SMAR. Fortunately, in 2015, a new hydrothermal field—Tongguan—developed on the NVZ of the SMAR was discovered. In this study, we conducted mineralogical and sulfur isotope studies on hydrothermal chimney and massive sulfide samples collected from the Tongguan field. We revealed the mineral composition and growth sequence in the chimney structures and sulfides and discovered two different chimney growth patterns featuring rhythmic banding and opal-filled structures. Additionally, sulfur isotopes suggest the presence of mixing between seawater within the oceanic crust and the upwelling hydrothermal fluid in this hydrothermal field. Our investigation revealed small-scale fluid heterogeneities during the submarine hydrothermal mineralization process, which is due to fluctuations in fluid temperatures and mineral deposition within individual vent frameworks. This work provides a reference for further understanding and comprehension of hydrothermal mineralization on the NVZs of SMAR. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

17 pages, 2133 KiB  
Article
Screening Dominant Species and Exploring Heavy Metals Repair Ability of Wild Vegetation for Phytoremediation in Copper Mine
by Xiaoli Wang, Caihong Tao and Lizhe An
Sustainability 2025, 17(2), 784; https://doi.org/10.3390/su17020784 - 20 Jan 2025
Cited by 1 | Viewed by 920
Abstract
Phytoremediation, a sustainable approach, is a hot topic, particularly for harsh mining environments. The Baiyin copper mine, a typical example of massive sulfide deposits, retains value as a national park after closure. Our research on it aimed to explore phytoremediation. By studying the [...] Read more.
Phytoremediation, a sustainable approach, is a hot topic, particularly for harsh mining environments. The Baiyin copper mine, a typical example of massive sulfide deposits, retains value as a national park after closure. Our research on it aimed to explore phytoremediation. By studying the plant community’s phyto-sociological attributes, we found that plants maintained long-term stability, with restoration potential. And the top-level dominant species, Lycium chinense and Nitraria tangutorum, were selected as candidate repair plants based on importance value. Then, we assessed soil heavy metals using pollution indices and found that Pb, As, and Cd were the primary contributors, along with Cu and Zn, causing pollution. Next, we determined the repair ability of two candidate repair plants through their accumulation effect and transport efficiency, finding that both had strong tolerance to these heavy metals and accumulated similar amounts, except for Cu, which was slightly lower than expected; however, Lycium compensated for this with its higher Cu conversion rate, leading to its final recommendation. Lycium has an uncommon advantage: during extraction of active ingredients, it can remove heavy metals as impurities, preserving economic value. This discovery provides the idea, theoretical basis, and pioneer plant for the phytoremediation of sulfide deposits like the Baiyin copper mine, particularly in northwestern China’s mining regions. Full article
Show Figures

Figure 1

20 pages, 14201 KiB  
Article
The Study of Gold Mineralization at the Polymetallic Dapingzhang VMS-Type Copper–Gold Deposit, Yunnan Province, China
by Shanshan Ru, Guo Li, Chuandong Xue, Feng Li, Shunhong Zou, Wei Wang and Honglin Zhou
Minerals 2025, 15(1), 54; https://doi.org/10.3390/min15010054 - 7 Jan 2025
Viewed by 997
Abstract
The Dapingzhang Cu-polymetallic deposit in Yunnan is a volcanic massive sulfide (VMS) deposit, located on the western edge of the Lanping–Simao block. Recently, gold-rich polymetallic orebodies with significant economic value have been discovered. However, the occurrence and enrichment mechanisms of the gold remain [...] Read more.
The Dapingzhang Cu-polymetallic deposit in Yunnan is a volcanic massive sulfide (VMS) deposit, located on the western edge of the Lanping–Simao block. Recently, gold-rich polymetallic orebodies with significant economic value have been discovered. However, the occurrence and enrichment mechanisms of the gold remain unclear. This study investigates the massive sulfide orebodies (V1) through detailed geological surveys. Techniques such as optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electron probe microanalysis (EPMA) were used to clarify the occurrence of gold, and to reveal the enrichment mechanisms. The genesis of the orebodies consists of three stages: (I) pyrite–quartz, (II) pyrite–chalcopyrite–sphalerite–galena–quartz, and (III) pyrite–chalcopyrite–sphalerite–galena–quartz–calcite. Gold precipitated during each of these mineralization stages, and it may be described as multiphase mineralization. Gold predominantly exists as invisible gold (≤0.1 μm), with minor visible gold as native gold and independent minerals (küstelite, electrum, calaverite). Invisible gold mainly occurs as gold microinclusions (Au+) in pyrite, chalcopyrite, and sphalerite. Combined with the previous research, comprehensive analysis determined that deep-circulating seawater, driven by a magmatic hydrothermal system, leaches and dissolves mineralizing materials from underlying volcanic rocks. The mineralizing fluid, mixed with magmatic fluid, migrates upward through volcanic conduits or is expelled to the seafloor. Changes in physicochemical conditions lead to the co-precipitation of gold and sulfides, forming a mineralization structure with lower channel facies and upper eruptive facies. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

27 pages, 29442 KiB  
Article
Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps
by Alexey A. Klyuvitkin, Marina D. Kravchishina, Dina P. Starodymova, Anton V. Bulokhov and Alla Yu. Lein
J. Mar. Sci. Eng. 2024, 12(12), 2339; https://doi.org/10.3390/jmse12122339 - 20 Dec 2024
Viewed by 948
Abstract
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at [...] Read more.
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at the Jan Mayen hydrothermal vent field area at 71° N and 6° W of the southernmost Mohns Ridge in the Norwegian–Greenland Sea. This area is characterized by high magmatic activity, axial volcanic ridges, and mafic-hosted volcanogenic massive sulfide deposits. Data on sinking particle fluxes from two hydrothermal settings, the Troll Wall and Soria Moria vent fields, located about 4 km apart, are discussed in the article. In particular, the study emphasize the differences between two hydrothermal settings from each other that demonstrate the geodiversity of hydrothermal processes within the relatively shallow Jan Mayen hydrothermal vent field area affected by the Iceland and Jan Mayen hotspots. The fluxes of sinking hydrothermally derived particles (barite, gypsum, non-crystalline Fe-Si oxyhydroxides, and Fe, Zn, and Cu sulfides) obtained at the Jan Mayen hydrothermal vents made it possible to elucidate the characteristic features of their buoyancy plumes and compare them with similar data reported for other submarine hydrothermal systems. In terms of the composition of the deep-sea hydrothermal particles from buoyant plumes, the studied vent fields are most similar to the Menez Gwen and Lucky Strike vent fields affected by the Azores hotspot. The supply of hydrothermally derived matter is accompanied by normal pelagic/hemipelagic sedimentation, which is dominated by biogenic particles, especially in the upper water layers. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

25 pages, 6929 KiB  
Review
Case Studies of Magnetic and Electromagnetic Techniques Covering the Last Fifteen Years
by Marc A. Vallée, Mouhamed Moussaoui and Khorram Khan
Minerals 2024, 14(12), 1286; https://doi.org/10.3390/min14121286 - 18 Dec 2024
Viewed by 2779
Abstract
Magnetic and electromagnetic techniques have a long history of application in mineral exploration to detect deposits and their surroundings. Their implementation over the last fifteen years has been affected by strong variations in the mining market in parallel with important technological developments. During [...] Read more.
Magnetic and electromagnetic techniques have a long history of application in mineral exploration to detect deposits and their surroundings. Their implementation over the last fifteen years has been affected by strong variations in the mining market in parallel with important technological developments. During this period, both methods were the subject of numerous documented case studies all over the globe, which is a sign of popularity and longevity of these techniques. Through a review of case histories from the main geophysical journals, we analyze the principal usage of these methods when applied to mineral exploration, while the majority of documented cases originate from North America, Asia, and Australia. There are more case studies describing the use of the magnetic method and we attribute this popularity to direct and indirect use of this method for mineral exploration. In particular, there is an increasing number of magnetic surveys conducted with drones. Combining magnetic and electromagnetic techniques is also common. The number of magnetic and EM technique case histories range by descending order from gold, porphyry copper, polymetallic, massive sulfides, uranium, Ni-Cu-PGE, iron ore, kimberlite, and iron-oxide copper-gold, with a number of single continent-specific applications. Full article
Show Figures

Figure 1

15 pages, 619 KiB  
Article
Sargassum Inundations and the Risk of Hypertension Disorders Among Pregnant Women Living in the French Caribbean Island of Martinique
by Rishika Banydeen, Mickael Rejaudry Lacavalerie, Loic Savoyen, Alice Monthieux, Mehdi Jean-Laurent, Jonathan Florentin, Fatima Radouani, Hossein Mehdaoui, Dabor Resiere and Remi Neviere
Int. J. Environ. Res. Public Health 2024, 21(12), 1612; https://doi.org/10.3390/ijerph21121612 - 1 Dec 2024
Cited by 1 | Viewed by 1349
Abstract
Since 2011, Caribbean territories have experienced massive and repeated sargassum seaweed inundations. Once on shore, sargassum degradation through anaerobic metabolism elicits the release of many noxious molecules, including hydrogen sulfide (H2S) and ammonia (NH3). H2S has been [...] Read more.
Since 2011, Caribbean territories have experienced massive and repeated sargassum seaweed inundations. Once on shore, sargassum degradation through anaerobic metabolism elicits the release of many noxious molecules, including hydrogen sulfide (H2S) and ammonia (NH3). H2S has been long recognized as a malodorous and highly toxic gas, while chronic exposure has not been extensively explored. Our objective was to assess whether pregnant women exposed to sargassum emissions would be more prone to developing hypertensive disorders compared to unexposed women. We conducted a retrospective study including 3020 pregnant women at the Obstetrics Department of the University Hospital of Martinique between 25 January 2016 and 31 July 2020. Exposure was defined as a distance of less than 2 km between the residence/workplace of the women and the sargassum strandings. Multivariate regression retained age, body mass index, sickle cell disease, primipaternity, gestational diabetes and sargassum emissions exposure as independent predictors of hypertensive events in pregnant women. Jointly with previous studies from our group, this study highlights the deleterious effects of sargassum emissions on human health in individuals chronically exposed to low to moderate H2S concentrations. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

24 pages, 27545 KiB  
Article
Superimposed Mineralization in the Xiaorequanzi Cu Deposit, Xinjiang: Evidence from Fluid Inclusions, H-O-S Isotopes, and Pyrite Trace Elements
by Yongqi Hao, Shunda Li, Fang Xia, Chuan Chen, Lingling Gao, Wei Wang, Xiaofei Du and Chenmeng Li
Minerals 2024, 14(11), 1166; https://doi.org/10.3390/min14111166 - 17 Nov 2024
Viewed by 1050
Abstract
The Xiaorequanzi Cu deposit is located in the western part of the Dananhu–Tousuquan Island arc in eastern Tianshan, Xinjiang. It includes stratiform and epithermal-related veinlet mineralization. However, the genesis of this deposit remains controversial. Therefore, fluid inclusions, H–O isotopes, in situ S, and [...] Read more.
The Xiaorequanzi Cu deposit is located in the western part of the Dananhu–Tousuquan Island arc in eastern Tianshan, Xinjiang. It includes stratiform and epithermal-related veinlet mineralization. However, the genesis of this deposit remains controversial. Therefore, fluid inclusions, H–O isotopes, in situ S, and trace elements in pyrite were employed in this study to constrain the origins of the deposit. The Xiaorequanzi Cu deposit’s mineralization stages can be categorized into the following three phases: I. volcanogenic massive sulfide (VMS) mineralization; II. quartz–chalcopyrite–pyrite; and III. quartz–chalcopyrite–sphalerite stages. Fluid inclusion studies suggest that Stage I is distinguished by high-temperature (peak: 320–360 °C) and moderate-salinity (peak: 7–9 wt%) fluids belonging to the H2O–NaCl ± CO2 system. Stages II–III only exhibit vapor–liquid inclusions, with mineralizing fluids belonging to the medium-to-low-temperature (Stage II peak: 160–180 °C; Stage III peak: 120–130 °C) and medium-to-low-salinity (Stage II peak: 5–7 wt%; Atage III peak: 4–6 wt%) H2O–NaCl system. The H–O isotopic data suggest that mineralizing fluid in Stage I is a blend of magmatic and paleo-seawater sources, while in Stages II–III, meteoric water predominates, accompanied by low mineralizing temperatures. In situ S isotope results indicate that the source of mineralizing materials in Stage I (2.52–4.48‰) were magmatic rocks, whereas the markedly higher δ34S values in stages II–III (4.68–6.60‰) suggest sulfur isotope leaching from sedimentary rocks by meteoric water as the main source. The LA–ICP–MS data of pyrite in the Xiaorequanzi Cu deposit suggest that Py1 was formed through volcanic processes, whereas Py2 and Py3 exhibited epithermal characteristics. Throughout the mineralization process, a trend in increasing oxygen and decreasing sulfur fugacity occurred, accompanied by a decreased mineralization temperature. This observation corresponds with the temperature data derived from the fluid inclusions. Additionally, the principal components of different generations of pyrite segregated as two clusters representing the VMS (Stage I) and epithermal mineralization (stages II–III). In summary, based on comprehensive research and previous geochronological studies, it is suggested that the Xiaorequanzi Cu deposit experienced two mineralization stages. The early stage is related to the volcanic activity of the Early Carboniferous (354 Ma), whereas the later stage is associated with Carboniferous–Permian (266–264 Ma) volcanic intrusions. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 9777 KiB  
Article
Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula
by Pablo Nuñez, Alvaro Rubio, Daniel Arias, Jorge Fuertes-Blanco, Fernando Cortés, Fernando Díaz-Riopa and Agustin Martin-Izard
Minerals 2024, 14(11), 1159; https://doi.org/10.3390/min14111159 - 16 Nov 2024
Viewed by 1201
Abstract
A geochemical study was conducted on the Touro deposit, which is situated within the Iberian Variscan Massif on the allochthonous terrain of the Galicia–Tras-os-Montes Zone. This study encompassed both mineralogical and geochemical analyses of the host rocks, with a particular focus on the [...] Read more.
A geochemical study was conducted on the Touro deposit, which is situated within the Iberian Variscan Massif on the allochthonous terrain of the Galicia–Tras-os-Montes Zone. This study encompassed both mineralogical and geochemical analyses of the host rocks, with a particular focus on the high-grade Fornás metamorphic unit of the Órdenes Complex. The deposit is composed of massive and semi-massive sulfides, the host rocks are amphibolites and paragneisses, and the ore is hosted in garnet amphibolites and mineralized paragneisses. A microscopic study of thin sections and over 300 electron probe microanalyses on various minerals were conducted with the objective of geochemical characterization. Furthermore, a study of approximately 6000 samples processed by mining companies for multielement analyses of over 1350 drill cores was conducted to geochemically characterize the host and mineralized rocks for use as exploration guides. Additionally, five samples underwent Sm-Nd isotope analysis. The data from the Touro Cu (Zn-Co) deposit are consistent with its classification as a mafic–siliciclastic (Besshi-type) VMS deposit constructed in a back-arc environment during the Ordovician period. Following burial and high-grade metamorphism during the Middle Devonian period, these rocks were subsequently exposed during the later Variscan deformation phases, resulting in the formation of the Arinteiro antiform. Full article
(This article belongs to the Special Issue Mineralization and Geochemistry of VMS Deposits)
Show Figures

Figure 1

17 pages, 6853 KiB  
Article
New Ag-Rich Mn-Zn±Pb Vein Mineralization at the Mavro Xylo Manganese Oxide Deposit, Drama, Greece
by George Soulamidis, Christina Stouraiti, Panagiotis Voudouris and Harilaos Tsikos
Minerals 2024, 14(9), 955; https://doi.org/10.3390/min14090955 - 21 Sep 2024
Cited by 1 | Viewed by 1248
Abstract
The manganese deposits at the Kato Nevrokopi area are located in the Drama Basin (Northern Greece) and belong to the Rhodope Metamorphic Province. The deposits were previously exploited for several supergene Mn-oxide ore bodies of massive, battery-grade nsutite, spatially associated with fault zones [...] Read more.
The manganese deposits at the Kato Nevrokopi area are located in the Drama Basin (Northern Greece) and belong to the Rhodope Metamorphic Province. The deposits were previously exploited for several supergene Mn-oxide ore bodies of massive, battery-grade nsutite, spatially associated with fault zones in the vicinity of Oligocene granitic intrusions. We conducted detailed geological, mineralogical, and geochemical investigations at the Mavro Xylo deposit, which led to the identification of Ag-rich Mn-Zn±Pb vein-type mineralization. The studied paragenesis appears to have developed during two hydrothermal stages: stage I, characterized by the mineral assemblage rhodonite–quartz–rhodochrosite–pyrophanite–pyrite–galena–Te bearing argentite–sphalerite–wurtzite–alabandite, and stage II, dominated by Ag-rich, Mn-Zn±Pb oxides in the form of fracture-fills along a high-angle NE-SW fault zone in brecciated marbles. Bulk analyses of the stage-II oxide assemblage yielded concentrations of Ag up to 0.57 wt.%. In the veins, wurtzite is present in bands, succeeded by manganese oxides, while calcite and quartz are the main gangue minerals. We placed particular emphasis on the occurrence of Ag in high concentrations within distinct manganese oxides. Major silver carriers include Zn-bearing todorokite, chalcophanite, and hydrous Pb-Mn oxide. The vein-type mineralization at Mavro Xylo shares many characteristics with other intermediate-sulfidation epithermal precious metal-rich deposits associated with high Mn concentrations. The evolution of the mineral paragenesis indicates a change in the physicochemical attributes of the ore-forming fluids, from initially reducing (stage I) to oxidizing (stage II). Although the origin of the initial ore-forming fluid remains to be constrained, the above redox change is tentatively attributed to the increasing incursion of meteoric waters over time. Full article
Show Figures

Figure 1

22 pages, 12371 KiB  
Article
The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits
by Nuriya R. Ayupova, Valery V. Maslennikov, Irina Yu. Melekestseva, Dmitry A. Artemyev and Elena V. Belogub
Minerals 2024, 14(9), 939; https://doi.org/10.3390/min14090939 - 13 Sep 2024
Cited by 1 | Viewed by 1301
Abstract
The formation of Paleozoic silica–iron-rich sedimentary rocks in the Urals volcanic-hosted massive sulfide (VHMS) deposits is considered a result of seafloor alteration of hyaloclastites mixed with calcareous/organic or sulfide material. These rocks host various Ti mineral phases pointing to the transformation of precursor [...] Read more.
The formation of Paleozoic silica–iron-rich sedimentary rocks in the Urals volcanic-hosted massive sulfide (VHMS) deposits is considered a result of seafloor alteration of hyaloclastites mixed with calcareous/organic or sulfide material. These rocks host various Ti mineral phases pointing to the transformation of precursor metacolloidal TiO2 phases to disordered anatase during seafloor alteration of hyaloclastites, which was later converted to globules and clusters and further to diagenetic rutile. The LA-ICP-MS analysis showed that the Ti content of hyaloclasts partly replaced by finely dispersed Si–Fe aggregates increases to 540–2950 ppm and decreases (<5 ppm) in full Si–Fe pseudomorphs after hyaloclasts. LA-ICP-MS element mapping reveals the enrichment in V, U, Cr, W, Nb, Pb, and Th of the anatase globules and the local accumulation of Zr, Y, and REE on their periphery. Corrosive biogenic textures in the outer zones of some hyaloclasts and biomorphic aggregates in rocks contain anatase particles in assemblage with apatite indicating the biophilic properties of Ti. This work fills the knowledge gaps about Ti mobilization during low-temperature seafloor alteration of hyaloclastites in VHMS deposits. Full article
(This article belongs to the Special Issue Mineralization and Geochemistry of VMS Deposits)
Show Figures

Figure 1

Back to TopTop