Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Supports and Synthesis of Catalysts
2.1.1. Modification of Titanium Oxide
2.1.2. Modification of Sibunit
2.1.3. Synthesis of Catalysts
2.2. Synthesis of 9,10-Dihydroxystearic Acid
2.3. Catalytic Experiments
2.4. Characterization of Catalysts and Supports
3. Results
3.1. X-ray Diffraction
3.2. AES ICP and XEDS
3.3. N2 Adsorption–Desorption
3.4. Transmission Electron Microscopy
3.5. X-ray Photoelectron Spectroscopy
3.6. Catalysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy 2022, 71st ed.; BP: London, UK, 2022. [Google Scholar]
- British Petroleum. Statistical Review of World Energy Globally Consistent Data on World Energy Markets and Authoritative Publications in the Field of Energy. BP Energy Outlook 2021, 70, 8–20. [Google Scholar]
- Lucas, N.; Kanna, N.R.; Nagpure, A.S.; Kokate, G.; Chilukuri, S. Novel Catalysts for Valorization of Biomass to Value-Added Chemicals and Fuels. J. Chem. Sci. 2014, 126, 403–413. [Google Scholar] [CrossRef]
- Den, W.; Sharma, V.K.; Lee, M.; Nadadur, G.; Varma, R.S. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value Added Chemicals. Front. Chem. 2018, 6, 1–23. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic Conversion of Lignocellulosic Biomass into Chemicals and Fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Hommes, A.; Heeres, H.J.; Yue, J. Catalytic Transformation of Biomass Derivatives to Value-Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem 2019, 11, 4671–4708. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Liu, Y.; He, C.; Ruan, R.; Yu, Z.; Jiang, L.; Zeng, Z.; Wu, Q. A Review on Selective Production of Value-Added Chemicals via Catalytic Pyrolysis of Lignocellulosic Biomass. Sci. Total Environ. 2020, 749, 142386. [Google Scholar] [CrossRef]
- Yang, W.; Du, X.; Liu, W.; Wang, Z.; Dai, H.; Deng, Y. Direct Valorization of Lignocellulosic Biomass into Value-Added Chemicals by Polyoxometalate Catalyzed Oxidation under Mild Conditions. Ind. Eng. Chem. Res. 2019, 58, 22996–23004. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and Biomass-Based Energy Supply and Demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kannengiesser, J.; Sakaguchi-Söder, K.; Mrukwia, T.; Jager, J.; Schebek, L. Extraction of Medium Chain Fatty Acids from Organic Municipal Waste and Subsequent Production of Bio-Based Fuels. Waste Manag. 2016, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Sukiran, M.A.; Loh, S.K.; Abu Bakar, N. Production of Bio-Oil from Fast Pyrolysis of Oil Palm Biomass Using Fluidised Bed Reactor. J. Energy Technol. Policy 2016, 6, 52–62. [Google Scholar]
- de Figueiredo, A.K.; Fernández, M.B.; Nolasco, S.M. High Stearic High Oleic Sunflower Oil Extraction: Influence of Temperature, Moisture, and Dehulling on Kinetic Parameters. Eur. J. Lipid Sci. Technol. 2023, 125, 2300035. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Du, W.; Gu, X.; Wang, M.; Zhang, Z.; Ma, Y.; Chen, G. Preparation and Performance of Vegetable Oils Fatty Acids Hydroxylmethyl Triamides as Crude Oil Flow Improvers. Pet. Chem. 2018, 58, 1070–1075. [Google Scholar] [CrossRef]
- Köckritz, A.; Blumenstein, M.; Martin, A. Catalytic Cleavage of Methyl Oleate or Oleic Acid. Eur. J. Lipid Sci. Technol. 2010, 112, 58–63. [Google Scholar] [CrossRef]
- Imamura, F.; Fretts, A.; Marklund, M.; Ardisson Korat, A.V.; Yang, W.; Lankinen, M.; Qureshi, W.; Helmer, C.; Chen, T.-A.; Wong, K.; et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018, 15, e1002670. [Google Scholar] [CrossRef]
- Ello, A.S.; Enferadi-kerenkan, A.; Trokourey, A.; Do, T.O. Sustainable Oxidative Cleavage of Vegetable Oils into Diacids by Organo-Modified Molybdenum Oxide Heterogeneous Catalysts. J. Am. Oil Chem. Soc. 2017, 94, 1451–1461. [Google Scholar] [CrossRef]
- Vassoi, A.; Tabanelli, T.; Sacchetti, A.; Di Gioia, F.; Capuzzi, L.; Cavani, F. The Oxidative Cleavage of 9,10-Dihydroxystearic Triglyceride with Oxygen and Cu Oxide-Based Heterogeneous Catalysts. ChemSusChem 2021, 14, 2375–2382. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Herbicides Based on Pelargonic Acid: Herbicides of the Bioeconomy. Biofuels Bioprod. Biorefining 2019, 13, 1476–1482. [Google Scholar] [CrossRef]
- Benessere, V.; Cucciolito, M.E.; De Santis, A.; Di Serio, M.; Esposito, R.; Melchiorre, M.; Nugnes, F.; Paduano, L.; Ruffo, F. A Sustainable Process for the Production of Varnishes Based on Pelargonic Acid Esters. J. Am. Oil Chem. Soc. 2019, 96, 443–451. [Google Scholar] [CrossRef]
- Li, Y. The Application of Caprylic Acid in Downstream Processing of Monoclonal Antibodies. Protein Expr. Purif. 2019, 153, 92–96. [Google Scholar] [CrossRef]
- Suberic Acid. Available online: https://drugs.ncats.io/drug/6U7Y4M9C1H (accessed on 30 November 2023).
- Travaini, R.; Martín-Juárez, J.; Lorenzo-Hernando, A.; Bolado-Rodríguez, S. Ozonolysis: An Advantageous Pretreatment for Lignocellulosic Biomass Revisited. Bioresour. Technol. 2016, 199, 2–12. [Google Scholar] [CrossRef]
- Goyal, R.; Singh, O.; Agrawal, A.; Samanta, C.; Sarkar, B. Advantages and Limitations of Catalytic Oxidation with Hydrogen Peroxide: From Bulk Chemicals to Lab Scale Process. Catal. Rev. Sci. Eng. 2022, 64, 229–285. [Google Scholar] [CrossRef]
- Kulik, A.; Janz, A.; Pohl, M.-M.; Martin, A.; Köckritz, A. Gold-Catalyzed Synthesis of Dicarboxylic and Monocarboxylic Acids. Eur. J. Lipid Sci. Technol. 2012, 114, 1327–1332. [Google Scholar] [CrossRef]
- Santacesaria, E.; Sorrentino, A.; Rainone, F.; Di Serio, M.; Speranza, F. Oxidative Cleavage of the Double Bond of Monoenic Fatty Chains in Two Steps: A New Promising Route to Azelaic Acid and Other Industrial Products. Ind. Eng. Chem. Res. 2000, 39, 2766–2771. [Google Scholar] [CrossRef]
- Nocito, F.; Orlando, I.; Digioia, F.; Aresta, M.; Dibenedetto, A. One-Pot Aerobic Cleavage of Monounsaturated Lipids Catalyzed by Mixed Oxides. ACS Sustain. Chem. Eng. 2021, 9, 6459–6469. [Google Scholar] [CrossRef]
- Noureddini, H.; Kanabur, M. Liquid-Phase Catalytic Oxidation of Unsaturated Fatty Acids. J. Am. Oil Chem. Soc. 1999, 76, 305–312. [Google Scholar] [CrossRef]
- Melchiorre, M.; Benessere, V.; Cucciolito, M.E.; Melchiorre, C.; Ruffo, F.; Esposito, R. Direct and Solvent-Free Oxidative Cleavage of Double Bonds in High-Oleic Vegetable Oils. Chem. Select 2020, 5, 1396–1400. [Google Scholar] [CrossRef]
- Spannring, P.; Prat, I.; Costas, M.; Lutz, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; Klein Gebbink, R.J.M. Fe(6-Me-PyTACN)-Catalyzed, One-Pot Oxidative Cleavage of Methyl Oleate and Oleic Acid into Carboxylic Acids with H2O2 and NaIO4. Catal. Sci. Technol. 2014, 4, 708–716. [Google Scholar] [CrossRef]
- Dapurkar, S.E.; Kawanami, H.; Yokoyama, T.; Ikushima, Y. Catalytic Oxidation of Oleic Acid in Supercritical Carbon Dioxide Media with Molecular Oxygen. Top. Catal. 2009, 52, 707–713. [Google Scholar] [CrossRef]
- Atapalkar, R.S.; Athawale, P.R.; Srinivasa Reddy, D.; Kulkarni, A.A. Scalable, Sustainable and Catalyst-Free Continuous Flow Ozonolysis of Fatty Acids. Green Chem. 2021, 23, 2391–2396. [Google Scholar] [CrossRef]
- Upadhyay, R.; Rana, R.; Sood, A.; Singh, V.; Kumar, R.; Srivastava, V.C.; Maurya, S.K. Heterogeneous Vanadium-Catalyzed Oxidative Cleavage of Olefins for Sustainable Synthesis of Carboxylic Acids. Chem. Commun. 2021, 57, 5430–5433. [Google Scholar] [CrossRef]
- Guicheret, B.; Da Silva, E.; Philippe, R.; Favre-Reguillon, A.; Vanoye, L.; Blach, P.; Raoul, Y.; De Bellefon, C.; Métay, E.; Lemaire, M. Aerobic Oxidative Cleavage of Vicinal Diol Fatty Esters by a Supported Ruthenium Hydroxide Catalyst. ACS Sustain. Chem. Eng. 2020, 8, 13167–13175. [Google Scholar] [CrossRef]
- Chen, S.; Wu, T.; Zhao, C. Synthesis of Branched Biolubricant Base Oil from Oleic Acid. ChemSusChem 2020, 13, 5516–5522. [Google Scholar] [CrossRef]
- Enferadi-Kerenkan, A.; Ello, A.S.; Do, T.-O. Synthesis, Organo-Functionalization, and Catalytic Properties of Tungsten Oxide Nanoparticles As Heterogeneous Catalyst for Oxidative Cleavage of Oleic Acid As a Model Fatty Acid into Diacids. Ind. Eng. Chem. Res. 2017, 56, 10639–10647. [Google Scholar] [CrossRef]
- Kerenkan, A.E.; Ello, A.S.; Echchahed, B.; Do, T.O. Synthesis of Mesoporous Tungsten Oxide/γ-Alumina and Surfactant-Capped Tungsten Oxide Nanoparticles and Their Catalytic Activities in Oxidative Cleavage of Oleic Acid. Int. J. Chem. React. Eng. 2016, 14, 899–907. [Google Scholar] [CrossRef]
- Gámez, S.; de la Torre, E.; Gaigneaux, E.M. Carbon Supports for the Oxidative Cleavage of Oleic Acid: Influence of Textural Properties. Mol. Catal. 2022, 533, 112797. [Google Scholar] [CrossRef]
- Kolobova, E.; Mäki-Arvela, P.; Grigoreva, A.; Pakrieva, E.; Carabineiro, S.A.C.; Peltonen, J.; Kazantsev, S.; Bogdanchikova, N.; Pestryakov, A.; Murzin, D.Y. Catalytic Oxidative Transformation of Betulin to Its Valuable Oxo-Derivatives over Gold Supported Catalysts: Effect of Support Nature. Catal. Today 2021, 367, 95–110. [Google Scholar] [CrossRef]
- Sharma, S.; Aich, S.; Roy, B. Low Temperature Steam Reforming of Ethanol over Cobalt Doped Bismuth Vanadate [Bi4(V0.90Co0.10)2O11−δ (BICOVOX)] Catalysts for Hydrogen Production. J. Phys. Chem. Solids 2021, 148, 109754. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Liu, X.; Li, C.; Zhao, Z.; Diao, S.; Cao, D.; Xiang, D.; Wu, C.; Liu, K. Improved CO-PROX Selectivity of CuO/CeO2 Catalysts by Decorating with Lanthanum via Surface Cuξ+ Redox Site. Appl. Surf. Sci. 2024, 649, 159087. [Google Scholar] [CrossRef]
- Yang, J.-C.E.; Zhu, M.-P.; Guan, D.; Yuan, B.; Sun, D.D.; Sun, C.; Fu, M.-L. Spin State-Tailored Tetrahedral and Octahedral Cobalt Centers on Millimetric Co-Al Oxide Catalysts as Dual Sites for Synergistic Peroxymonosulfate Activation. Appl. Catal. B Environ. 2024, 342, 123466. [Google Scholar] [CrossRef]
- Sharma, S.; Yashwanth, P.K.; Roy, B. Deactivation Study of the BICOVOX Catalysts Used in Low Temperature Steam Reforming of Ethanol for H2 Production. J. Phys. Chem. Solids 2021, 156, 110138. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Xu, Y.; Zheng, Y.; Huang, F. Effect of Silica on Generation and Stability of Cu+ Cations in CuO/CeO2 Catalysts for CO Oxidation in H2-Rich Atmosphere. Int. J. Hydrogen Energy 2024, 53, 1065–1075. [Google Scholar] [CrossRef]
- Seriyala, A.K.; Chava, R.; Baffoe, J.; Pham, X.T.L.; Leclerc, C.; Appari, S.; Roy, B. Tin and Lanthanum Modified Ni/CeO2 Catalyst Systems for Low Temperature Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2024, 50, 239–260. [Google Scholar] [CrossRef]
- Di, M.; Schaefer, A.; Hemmingsson, F.; Bell, T.; Feng, Y.; Skoglundh, M.; Thompsett, D.; Carlsson, P.-A. Why Nitrogen Oxide Inhibits CO Oxidation over Highly Dispersed Platinum Ceria Catalysts. Catal. Today 2024, 426, 114394. [Google Scholar] [CrossRef]
- Kozhukhova, A.E.; du Preez, S.P.; Bessarabov, D.G. Development of Pt−Co/Al2O3 Bimetallic Catalyst and Its Evaluation in Catalytic Hydrogen Combustion Reaction. Int. J. Hydrogen Energy 2024, 51, 1079–1096. [Google Scholar] [CrossRef]
- Pakrieva, E.; Kolobova, E.; Kotolevich, Y.; Pascual, L.; Carabineiro, S.A.C.; Kharlanov, A.N.; Pichugina, D.; Nikitina, N.; German, D.; Partida, T.A.Z.; et al. Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in N-Octanol Oxidation. Nanomaterials 2020, 10, 880. [Google Scholar] [CrossRef]
- Pakrieva, E.; Kolobova, E.; German, D.; Stucchi, M.; Villa, A.; Prati, L.; Carabineiro, S.A.C.; Bogdanchikova, N.; Corberán, V.C.; Pestryakov, A. Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes 2020, 8, 1016. [Google Scholar] [CrossRef]
- German, D.; Pakrieva, E.; Kolobova, E.; Carabineiro, S.A.C.; Stucchi, M.; Villa, A.; Prati, L.; Bogdanchikova, N.; Corberán, V.C.; Pestryakov, A. Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. Catalysts 2021, 11, 115. [Google Scholar] [CrossRef]
- German, D.; Kolobova, E.; Pakrieva, E.; Carabineiro, S.A.C.; Sviridova, E.; Perevezentsev, S.; Alijani, S.; Villa, A.; Prati, L.; Postnikov, P.; et al. The Effect of Sibunit Carbon Surface Modification with Diazonium Tosylate Salts of Pd and Pd-Au Catalysts on Furfural Hydrogenation. Materials 2022, 15, 4695. [Google Scholar] [CrossRef]
- Kolobova, E.; Kotolevich, Y.; Pakrieva, E.; Mamontov, G.; Farias, M.H.; Bogdanchikova, N.; Corberan, V.C.; Pestryakov, A. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments. Molecules 2016, 21, 486. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Reyes, M.; Camposeco-Solis, R.; Zanella, R.; Rodríguez-González, V.; Ruiz, F. Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catal. Lett. 2018, 148, 383–396. [Google Scholar] [CrossRef]
- Zanella, R.; Giorgio, S.; Henry, C.R.; Louis, C. Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642. [Google Scholar] [CrossRef]
- Zanella, R.; Louis, C. Influence of the Conditions of Thermal Treatments and of Storage on the Size of the Gold Particles in Au/TiO2 Samples. Catal. Today 2005, 107–108, 768–777. [Google Scholar] [CrossRef]
- Zanella, R.; Delannoy, L.; Louis, C. Mechanism of Deposition of Gold Precursors onto TiO2 during the Preparation by Cation Adsorption and Deposition-Precipitation with NaOH and Urea. Appl. Catal. A Gen. 2005, 291, 62–72. [Google Scholar] [CrossRef]
- Villa, A.; Schiavoni, M.; Campisi, S.; Veith, G.M.; Prati, L. Pd-Modified Au on Carbon as An Effective and Durable Catalyst for the Direct Oxidation of HMF to 2,5-Furandicarboxylic Acid. ChemSusChem 2013, 6, 609–612. [Google Scholar] [CrossRef]
- Kulik, A.; Martin, A.; Pohl, M.M.; Fischer, C.; Köckritz, A. Insights into Gold-Catalyzed Synthesis of Azelaic Acid. Green Chem. 2014, 16, 1799–1806. [Google Scholar] [CrossRef]
- Bell, T.E.; González-Carballo, J.M.; Tooze, R.P.; Torrente-Murciano, L. Single-Step Synthesis of Nanostructured γ-Alumina with Solvent Reusability to Maximise Yield and Morphological Purity. J. Mater. Chem. A 2015, 3, 6196–6201. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S.V. Yucca-Derived Synthesis of Gold Nanomaterial and Their Catalytic Potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef]
- John, A.K.; Palaty, S.; Sharma, S.S. Greener Approach towards the Synthesis of Titanium Dioxide Nanostructures with Exposed {001} Facets for Enhanced Visible Light Photodegradation of Organic Pollutants. J. Mater. Sci. Mater. Electron. 2020, 31, 20868–20882. [Google Scholar] [CrossRef]
- Sayyed, S.A.A.R.; I Beedri, N.; Kadam, V.S.; Pathan, H.M. Rose Bengal-Sensitized Nanocrystalline Ceria Photoanode for Dye-Sensitized Solar Cell Application. Bull. Mater. Sci. 2016, 39, 1381–1387. [Google Scholar] [CrossRef]
- Kustov, L.M.; Kalenchuk, A.N. Effect of Cr on a Ni-Catalyst Supported on Sibunite in Bicyclohexyl Dehydrogenation in Hydrogen Storage Application. Catalysts 2022, 12, 1506. [Google Scholar] [CrossRef]
- Molaie, R.; Farhadi, K.; Forough, M.; Hajizadeh, S. Green Biological Fabrication and Characterization of Highly Monodisperse Palladium Nanoparticles Using Pistacia Atlantica Fruit Broth. J. Nanostructures 2018, 8, 47–54. [Google Scholar] [CrossRef]
- Gualteros, J.A.D.; Garcia, M.A.S.; da Silva, A.G.M.; Rodrigues, T.S.; Cândido, E.G.; e Silva, F.A.; Fonseca, F.C.; Quiroz, J.; de Oliveira, D.C.; de Torresi, S.I.C.; et al. Synthesis of Highly Dispersed Gold Nanoparticles on Al2O3, SiO2, and TiO2 for the Solvent-Free Oxidation of Benzyl Alcohol under Low Metal Loadings. J. Mater. Sci. 2019, 54, 238–251. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; Zhao, M.; Yang, T.; Gilroy, K.D.; da Silva, A.G.M.; Camargo, P.H.C.; Xia, Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chem. Eur. J. 2018, 24, 16944–16963. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.K.; Zhao, J.F.; Loh, T.P. Palladium-Catalyzed C-C Bond Formation of Arylhydrazines with Olefins via Carbon-Nitrogen Bond Cleavage. Org. Lett. 2011, 13, 6308–6311. [Google Scholar] [CrossRef]
- Yan, X.; Sun, H.; Xiang, H.; Yu, D.G.; Luo, D.; Zhou, X. Palladium-Catalyzed C(carbonyl)-C Bond Cleavage of Amides: A Facile Access to Phenylcarbamate Derivatives with Alcohols. Chem. Commun. 2018, 54, 8606–8609. [Google Scholar] [CrossRef]
- Nambo, M.; Itami, K. Palladium-Catalyzed Carbon-Carbon Bond Formation and Cleavage of Organo(Hydro)Fullerenes. Chem. Eur. J. 2009, 15, 4760–4764. [Google Scholar] [CrossRef]
№ | Substrate * | Catalyst | Conditions | Conversion (%) | Yield or Selectivity (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
AA | PA | SA | CA | ||||||
1 | MDS | Au/Al2O3 | 1 mmol of substrate, 0.2 mol % Au, 5 mmol NaOH, 20 mL H2O, 80 °C, 5 bar O2 | 100 | 86 | 99 | ~7 | ~7 | [25] |
2 | 9,10-DHSA | CoAc2/ H2WO4/CH3COONa | 360 min, 15 bar O2, 70 °C | 100 | 15 | 56 | - | - | [26] |
3 | HOSO | CeO2/ Nb2O5/ TiO2 + MeOH | 12 bar O2 (180 °C), 6 bar N2 (160 °C), 5 h | - | 34 | [27] | |||
4 | OA | Silica-supported W-oxide | 20 g of substrate, 60 mL H2O2 (30%), 150 mL tert-butanol, 1.5 g of catalyst, 130 °C, 1 h | 79 | 32 | 36 | - | - | [28] |
5 | OA | H2WO4 | 5 g of substrate, 7.5 g H2O2 (60%), ratio cat/sub = 1/400, 100 °C, 24 h | 94 | 60 | 16 | - | [29] | |
6 | OA | [Fe(OTf)2 (6-Me-PyTACN)] | Solvent – MeCN, 4.5 eq. NaIO4, 100 eq. H2O, 24 h, then H2SO4 (0.5 eq.) in H2O (50 eq.), 12 h, and NaHCO3 (1 eq.) and catalyst (1 mol %) | 100 | 85 | - | - | - | [30] |
7 | OA | Cr/MCM-41 | 1 g of substrate, 40 mg of catalyst, 180 °C, 8 h, pO2 = 1 Mpa and pCO2 = 10 MPa | >95 | 32 | 32 | 10 | 10 | [31] |
8 | 9,10-DSTG | CuFe2O4 | 1 wt% catalyst, 80 °C, stirring 500 rpm, pO2 = 25 bar, 5 h | 96 | 70 | 52 | - | - | [18] |
9 | OA | - | 2 g of substrate, flow rate for OA 1 mL/min, flow rate for O3/O2 500 mL/min, 0 °C, solvent—50 mL of acetone:H2O (95:5) | - | 84 | - | - | - | [32] |
10 | SO | V2O5/TiO2 | 1 g of substrate, 30 wt. % of catalyst, TBHP (20 volume), 80 °C, 12 h | - | 66 | - | - | - | [33] |
11 | VDFE | Ru(OH)x/ɣ-Al2O3 | 4 g of substrate, 12 mL dodecane, 60 mL H2O, 6 mol % of catalyst, pO2 = 5 bar | 99 | 83 | 86 | 6 | 4 | [34] |
12 | OA | KMnO4/NaOH/TEBAC | 2 g of substrate, 2 g of KMnO4, 0.2 g TEBAC, 50 mL H2O, 50 °C, 8 h | 100 | 96 | 81 | - | - | [35] |
13 | OA | WO3·H2O | 1 g of substrate, 7.5 mL of tert-butanol, 4 mL of H2O2, 0.45 g of catalyst, stirring 400 rpm, 120 °C, 5 h | 100 | 77 | 69 | - | - | [36] |
14 | OA | Surfactant-capped NPs WO3 | 2 g of substrate, 15 mL of tert-butanol, 6 mL of H2O2, 0.9 g of catalyst, 120 °C, 5 h | 95 | 58 | 24 | - | - | [37] |
15 | OA | ACO-Ru (2%) | 0.5 mmol of substrate, solvent—H2O/MeCN/AcOEt (4/2/1), 8 equivalents of NaIO4, 100 mg of catalyst, stirring 1500 rpm, r.t., 24 h | 53 | 16 | 16 | - | - | [38] |
16 | OA | CBO-Ru (2%) | 0.5 mmol of substrate, solvent—H2O/MeCN/AcOEt (4/2/1), 8 equivalents of NaIO4, 100 mg of catalyst, stirring 1500 rpm, r.t., 24 h | 100 | 75 | 75 | - | - | [38] |
Sample | Indicated Phase a | wi/⅀w (%) a | SBET (m2/g) b | Pore Size (nm) b | Pore Volume (cm3/g) b | Metal Content (wt. %) c | dNPs (nm) d | Relative Content (%) e | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pd | Au | Pd | Au | |||||||||||
Pd0 | Pd2+ | Pd4+ | Au0 | Au+ | Au3+ | |||||||||
AlOOH_S5 | AlO(OH) (orthorhombic) | 100 | 385 | 5.7 | 0.67 | - | - | - | - | - | - | - | - | - |
AlOOH_C | AlO(OH) (orthorhombic) | 100 | 321 | 5.8 | 0.41 | - | - | - | - | - | - | - | - | - |
Au/AlOOH_S5 | AlO(OH) (orthorhombic) Au | 96 4 | 293 | 6.0 | 0.55 | - | 3.94 | 4.2 | - | - | - | 100 | 0 | 0 |
Au/AlOOH_C | AlO(OH) (orthorhombic) Au | 96 4 | 254 | 5.6 | 0.52 | - | 3.95 | 2.9 | - | - | - | 81 | 19 | 0 |
La2O3/TiO2 | TiO2 (tetragonal) | - | 45.3 | 356.3 | 0.38 | - | - | - | - | - | - | - | - | - |
CeO2/TiO2 | TiO2 (tetragonal) CeO2 (cubic) | - - | 43.4 | 292.4 | 0.35 | - | - | - | - | - | - | - | - | - |
Au/La2O3/TiO2 | TiO2 (tetragonal) | - | 45.2 | 211.5 | 0.24 | - | 3.3 | 2.6 | - | - | - | 83 | 17 | 0 |
Au/CeO2/TiO2 | TiO2 (tetragonal) | - | 46.6 | 211.1 | 0.26 | - | 4.1 | 2.8 | - | - | - | 68 | 20 | 12 |
Cp-NH4OH | C (hexagonal) | - | 318 | 6.4 | 0.58 | - | - | - | - | - | - | - | - | - |
Pd/Cp-NH4OH | C (hexagonal) Pd (cubic) | - - | 320 | 6.8 | 0.62 | 1.2 | - | 4.3 | 59 | 31 | 10 | - | - | - |
Au/Cp-NH4OH | C (hexagonal) | - | 322 | 5.0 | 0.55 | - | 0.9 | 2.9 | - | - | - | 100 | 0 | 0 |
PdAu/Cp-NH4OH | C (hexagonal) | - | 331 | 6.5 | 0.62 | 0.56 | 0.20 * | 4.0 | 91 | 7 | 2 | 92 | 8 | 0 |
Entry | Catalyst | Conv., (%) | Y AA, (%) | Y PA, (%) | Y CA, (%) | Y SA, (%) | Recovery Rate |
---|---|---|---|---|---|---|---|
1 | Au/AlOOH_S5 | 35 | 11 | 19 | 4 | 3 | 83 |
2 | Au/AlOOH_C | 100 | 51 | 66 | 11 | 9 | 69 |
3 | Au/La2O3/TiO2 | 99 | 51 | 56 | 7 | 7 | 62 |
4 | Au/CeO2/TiO2 | 100 | 29 | 37 | 6 | 7 | 40 |
5 | Pd/Cp-NH4OH | 46 | 0 | 0 | 0 | 0 | 54 |
6 | Au/Cp-NH4OH | 88 | 48 | 61 | 21 | 14 | 84 |
7 | PdAu/Cp-NH4OH | 77 | 0 | 0 | 0 | 0 | 23 |
Entry | Catalyst | Particle Size, nm | TOF, h−1 |
---|---|---|---|
1 | Au/AlOOH_S5 | 4.2 | 40 |
2 | Au/AlOOH_C | 2.9 | 115 |
3 | Au/La2O3/TiO2 | 2.6 | 114 |
4 | Au/CeO2/TiO2 | 2.8 | 115 |
5 | Pd/Cp-NH4OH | 4.3 | 53 |
6 | Au/Cp-NH4OH | 2.9 | 101 |
7 | PdAu/Cp-NH4OH | 4.0 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, D.; Turyanskiy, V.; Schroeder, J.; Al-Yusufi, M.; Neubauer, K.; Köckritz, A.; Carabineiro, S.A.C.; Kolobova, E.; Pestryakov, A. Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts. Reactions 2024, 5, 120-134. https://doi.org/10.3390/reactions5010006
German D, Turyanskiy V, Schroeder J, Al-Yusufi M, Neubauer K, Köckritz A, Carabineiro SAC, Kolobova E, Pestryakov A. Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts. Reactions. 2024; 5(1):120-134. https://doi.org/10.3390/reactions5010006
Chicago/Turabian StyleGerman, Dmitrii, Vladislav Turyanskiy, Julia Schroeder, Mohammed Al-Yusufi, Katja Neubauer, Angela Köckritz, Sónia A. C. Carabineiro, Ekaterina Kolobova, and Alexey Pestryakov. 2024. "Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts" Reactions 5, no. 1: 120-134. https://doi.org/10.3390/reactions5010006
APA StyleGerman, D., Turyanskiy, V., Schroeder, J., Al-Yusufi, M., Neubauer, K., Köckritz, A., Carabineiro, S. A. C., Kolobova, E., & Pestryakov, A. (2024). Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts. Reactions, 5(1), 120-134. https://doi.org/10.3390/reactions5010006