Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = magnetoresponsive nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5738 KiB  
Article
Field-Induced Agglomerations of Polyethylene-Glycol-Functionalized Nanoclusters: Rheological Behaviour and Optical Microscopy
by Sandor I. Bernad, Vlad Socoliuc, Izabell Craciunescu, Rodica Turcu and Elena S. Bernad
Pharmaceutics 2023, 15(11), 2612; https://doi.org/10.3390/pharmaceutics15112612 - 10 Nov 2023
Cited by 1 | Viewed by 1346
Abstract
This research aims to investigate the agglomeration processes of magnetoresponsive functionalized nanocluster suspensions in a magnetic field, as well as how these structures impact the behaviour of these suspensions in biomedical applications. The synthesis, shape, colloidal stability, and magnetic characteristics of PEG-functionalized nanoclusters [...] Read more.
This research aims to investigate the agglomeration processes of magnetoresponsive functionalized nanocluster suspensions in a magnetic field, as well as how these structures impact the behaviour of these suspensions in biomedical applications. The synthesis, shape, colloidal stability, and magnetic characteristics of PEG-functionalized nanoclusters are described in this paper. Experiments using TEM, XPS, dynamic light scattering (DLS), VSM, and optical microscopy were performed to study chain-like agglomeration production and its influence on colloidal behaviour in physiologically relevant suspensions. The applied magnetic field aligns the magnetic moments of the nanoclusters. It provides an attraction between neighbouring particles, resulting in the formation of chains, linear aggregates, or agglomerates of clusters aligned along the applied field direction. Optical microscopy has been used to observe the creation of these aligned linear formations. The design of chain-like structures can cause considerable changes in the characteristics of ferrofluids, ranging from rheological differences to colloidal stability changes. Full article
Show Figures

Figure 1

21 pages, 6317 KiB  
Article
Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting
by Sandor I. Bernad, Vlad Socoliuc, Daniela Susan-Resiga, Izabell Crăciunescu, Rodica Turcu, Etelka Tombácz, Ladislau Vékás, Maria C. Ioncica and Elena S. Bernad
Pharmaceutics 2022, 14(9), 1923; https://doi.org/10.3390/pharmaceutics14091923 - 12 Sep 2022
Cited by 8 | Viewed by 2194
Abstract
Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in [...] Read more.
Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model’s aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation. Full article
Show Figures

Figure 1

16 pages, 4533 KiB  
Article
Block Copolymer-Based Magnetic Mixed Matrix Membranes—Effect of Magnetic Field on Protein Permeation and Membrane Fouling
by Lakshmeesha Upadhyaya, Mona Semsarilar, Damien Quemener, Rodrigo Fernández-Pacheco, Gema Martinez, Isabel M. Coelhoso, Suzana P. Nunes, João G. Crespo, Reyes Mallada and Carla A. M. Portugal
Membranes 2021, 11(2), 105; https://doi.org/10.3390/membranes11020105 - 2 Feb 2021
Cited by 18 | Viewed by 3549
Abstract
In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron [...] Read more.
In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes. Full article
(This article belongs to the Special Issue Membrane and Membrane Bioreactors Applied to Health and Life Sciences)
Show Figures

Graphical abstract

13 pages, 3592 KiB  
Article
Magnetic-Assisted Cell Alignment within a Magnetic Nanoparticle-Decorated Reduced Graphene Oxide/Collagen 3D Nanocomposite Hydrogel
by Mallesh Santhosh, Jin-Ha Choi and Jeong-Woo Choi
Nanomaterials 2019, 9(9), 1293; https://doi.org/10.3390/nano9091293 - 10 Sep 2019
Cited by 45 | Viewed by 5523
Abstract
Hydrogel scaffolds are particularly interesting for applications in tissue engineering because of their ability to create a favorable environment which mimics in vivo conditions. However, the hierarchically ordered anisotropic structure which is found in many native tissues and cellular components is hard to [...] Read more.
Hydrogel scaffolds are particularly interesting for applications in tissue engineering because of their ability to create a favorable environment which mimics in vivo conditions. However, the hierarchically ordered anisotropic structure which is found in many native tissues and cellular components is hard to achieve in 3D scaffolds. In this work, we report the incorporation of magnetic nanoparticle-decorated reduced graphene oxide (m-rGO) within a collagen hydrogel. This magneto-responsive m-rGO aligned within the collagen hydrogel during gelation with the application of a low external magnetic field. This nanocomposite hydrogel with magnetically aligned m-rGO flakes is capable of encapsulating neuroblastoma cells (SH-SY5Y), promoting cell differentiation and inducing oriented cell growth owing to its excellent biocompatibility and electrical conductivity. The directionally oriented and differentiated SH-SY5Y cells within the m-rGO collagen hydrogel showed propagation of calcium signal along the direction of orientation. This method can be applied to creating magnetically responsive materials with potential for various biomedical applications. Full article
Show Figures

Graphical abstract

Back to TopTop