Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = magnetoacoustic waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 20006 KiB  
Review
Magnetoelectric BAW and SAW Devices: A Review
by Bin Luo, Prasanth Velvaluri, Yisi Liu and Nian-Xiang Sun
Micromachines 2024, 15(12), 1471; https://doi.org/10.3390/mi15121471 - 3 Dec 2024
Cited by 5 | Viewed by 3178
Abstract
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in [...] Read more.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications. In addition, ME non-reciprocal magnetoacoustic devices using hybrid magnetoacoustic waves present novel solutions for RF isolation, which have also shown potential for the efficient control of quantum defects, such as negatively charged nitrogen-vacancy (NV) centers. Continued advancements in materials and device structures are expected to further enhance ME device performance, positioning them as key components in future bio-sensing, wireless communication, and quantum information technologies. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

17 pages, 2436 KiB  
Article
Numerical Simulations of the Decaying Transverse Oscillations in the Cool Jet
by Abhishek K. Srivastava and Balveer Singh
Physics 2023, 5(3), 655-671; https://doi.org/10.3390/physics5030043 - 25 Jun 2023
Cited by 3 | Viewed by 2067
Abstract
In the present paper, we describe a 2.5D (two-and-a-half-dimensional) magnetohydrodynamic (MHD) simulation that provides a detailed picture of the evolution of cool jets triggered by initial vertical velocity perturbations in the solar chromosphere. We implement random multiple velocity, Vy, pulses of [...] Read more.
In the present paper, we describe a 2.5D (two-and-a-half-dimensional) magnetohydrodynamic (MHD) simulation that provides a detailed picture of the evolution of cool jets triggered by initial vertical velocity perturbations in the solar chromosphere. We implement random multiple velocity, Vy, pulses of amplitude 20–50 km s1 between 1 Mm and 1.5 Mm in the Sun’s atmosphere below its transition region (TR). These pulses also consist of different switch-off periods between 50 s and 300 s. The applied vertical velocity pulses create a series of magnetoacoustic shocks steepening above the TR. These shocks interact with each other in the inner corona, leading to complex localized velocity fields. The upward propagation of such perturbations creates low-pressure regions behind them, which propel a variety of cool jets and plasma flows in the localized corona. The localized complex velocity fields generate transverse oscillations in some of these jets during their evolution. We study the transverse oscillations of a representative cool jet J1, which moves up to the height of 6.2 Mm above the TR from its origin point. During its evolution, the plasma flows make the spine of jet J1 radially inhomogeneous, which is visible in the density and Alfvén speed smoothly varying across the jet. The highly dense J1, which is triggered along the significantly curved magnetic field lines, supports the propagating transverse wave of period of approximately 195 s with a phase speed of about 125 km s−1. In the distance–time map of density, it is manifested as a transverse kink wave. However, the careful investigation of the distance–time maps of the x- and z-components of velocity reveals that these transverse waves are actually of mixed Alfvénic modes. The transverse wave shows evidence of damping in the jet. We conclude that the cross-field structuring of the density and characteristic Alfvén speed within J1 causes the onset of the resonant conversion and leakage of the wave energy outward to dissipate these transverse oscillations via resonant absorption. The wave energy flux is estimated as approximately of 1.0 × 106 ergs cm2 s1. This energy, if it dissipates through the resonant absorption into the corona where the jet is propagated, is sufficient energy for the localized coronal heating. Full article
Show Figures

Figure 1

18 pages, 538 KiB  
Article
An Efficient Analytical Approach to Investigate Fractional Caudrey–Dodd–Gibbon Equations with Non-Singular Kernel Derivatives
by Dowlath Fathima, Reham A. Alahmadi, Adnan Khan, Afroza Akhter and Abdul Hamid Ganie
Symmetry 2023, 15(4), 850; https://doi.org/10.3390/sym15040850 - 2 Apr 2023
Cited by 24 | Viewed by 1879
Abstract
Fractional calculus is at this time an area where many models are still being developed, explored, and used in real-world applications in many branches of science and engineering where non-locality plays a key role. Although many wonderful discoveries have already been reported by [...] Read more.
Fractional calculus is at this time an area where many models are still being developed, explored, and used in real-world applications in many branches of science and engineering where non-locality plays a key role. Although many wonderful discoveries have already been reported by researchers in important monographs and review articles, there is still a great deal of non-local phenomena that have not been studied and are only waiting to be explored. As a result, we can continually learn about new applications and aspects of fractional modelling. In this study, a precise and analytical method with non-singular kernel derivatives is used to solve the Caudrey–Dodd–Gibbon (CDG) model, a modification of the fifth-order KdV equation (fKdV). The fractional derivative is taken into account by the Caputo–Fabrizio (CF) derivative and the Atangana–Baleanu derivative in the Caputo sense (ABC). This model illustrates the propagation of magneto-acoustic, shallow-water, and gravity–capillary waves in a plasma medium. The dynamic behaviour of the acquired solutions has been represented in a number of two- and three-dimensional figures. A number of simulations are also performed to demonstrate how the resulting solutions physically behave with respect to fractional order. The significance of the current research is that new solutions are obtained by using a strong analytical approach. Utilizing a fractional derivative operator to solve equivalent models is another benefit of this approach. The results of the present work have similar aspects to the symmetry of partial differential equations. Full article
(This article belongs to the Special Issue Functional Analysis, Fractional Operators and Symmetry/Asymmetry)
Show Figures

Figure 1

21 pages, 2810 KiB  
Article
Nonlinear Coupling of Alfvén and Slow Magnetoacoustic Waves in Partially Ionized Solar Plasmas: The Effect of Thermal Misbalance
by José Luis Ballester
Physics 2023, 5(2), 331-351; https://doi.org/10.3390/physics5020025 - 30 Mar 2023
Cited by 4 | Viewed by 2258
Abstract
Solar chromosphere and photosphere, as well as solar atmospheric structures, such as prominences and spicules, are made of partially ionized plasmas. Observations have reported the presence of damped or amplified oscillations in these solar plasmas, which have been interpreted in terms of magnetohydrodynamic [...] Read more.
Solar chromosphere and photosphere, as well as solar atmospheric structures, such as prominences and spicules, are made of partially ionized plasmas. Observations have reported the presence of damped or amplified oscillations in these solar plasmas, which have been interpreted in terms of magnetohydrodynamic (MHD) waves. Slow magnetoacoustic waves could be responsible for these oscillations. The present study investigates the temporal behavior of the field-aligned motions that represent slow magnetoacoustic waves excited in a partially ionized prominence plasma by the ponderomotive force. Starting from single-fluid MHD equations, including radiative losses, a heating mechanism and ambipolar diffusion, and using a regular perturbation method, first- and second-order partial differential equations have been derived. By numerically solving second-order equations describing field-aligned motions, the temporal behavior of the longitudinal velocity perturbations is obtained. The damping or amplification of these perturbations can be explained in terms of heating–cooling misbalance, the damping effect due to ambipolar diffusion and the variation of the first adiabatic exponent with temperature and ionization degree. Full article
Show Figures

Figure 1

12 pages, 3127 KiB  
Article
Stability of Slow Magnetoacoustic and Entropy Waves in the Solar Coronal Plasma with Thermal Misbalance
by Dmitrii Y. Kolotkov, Valery M. Nakariakov and Joseph B. Fihosy
Physics 2023, 5(1), 193-204; https://doi.org/10.3390/physics5010015 - 8 Feb 2023
Cited by 14 | Viewed by 2318
Abstract
The back-reaction of the perturbed thermal equilibrium in the solar corona on compressive perturbations, also known as the effect of wave-induced thermal misbalance, is known to result in thermal instabilities chiefly responsible for the formation of fine thermal structuring of the corona. We [...] Read more.
The back-reaction of the perturbed thermal equilibrium in the solar corona on compressive perturbations, also known as the effect of wave-induced thermal misbalance, is known to result in thermal instabilities chiefly responsible for the formation of fine thermal structuring of the corona. We study the role of the magnetic field and field-aligned thermal conduction in triggering instabilities of slow magnetoacoustic and entropy waves in quiescent and hot active region loops, caused by thermal misbalance. Effects of the magnetic field are accounted for by including it in the parametrization of a guessed coronal heating function, and the finite plasma parameter β, in terms of the first-order thin flux tube approximation. Thermal conduction tends to stabilize both slow and entropy modes, broadening the interval of plausible coronal heating functions allowing for the existence of a thermodynamically stable corona. This effect is most pronounced for hot loops. In contrast to entropy waves, the stability of which is found to be insensitive to the possible dependence of the coronal heating function on the magnetic field, slow waves remain stable only for certain functional forms of this dependence, opening up perspectives for its seismological diagnostics in future. Full article
Show Figures

Figure 1

12 pages, 1892 KiB  
Article
Magnetoacoustic Wave Scattering and Dynamic Stress Concentration around the Elliptical Opening in Exponential-Gradient Piezomagnetic Materials
by Zhiwen Wang, Chuanping Zhou, Xueting Zhang, Xiao Han, Junqi Bao, Lingkun Chen, Maofa Wang, Yongping Gong and Weihua Zhou
Materials 2022, 15(13), 4564; https://doi.org/10.3390/ma15134564 - 29 Jun 2022
Cited by 1 | Viewed by 1650
Abstract
Based on the theory of magnetoacoustic coupled dynamics, the purpose of this paper is to evaluate the dynamic stress concentration near an elliptical opening in exponential-gradient piezomagnetic materials under the action of antiplane shear waves. By the wave function expansion, the solutions for [...] Read more.
Based on the theory of magnetoacoustic coupled dynamics, the purpose of this paper is to evaluate the dynamic stress concentration near an elliptical opening in exponential-gradient piezomagnetic materials under the action of antiplane shear waves. By the wave function expansion, the solutions for the acoustic wave fields and magnetic fields can be obtained. Stress analysis is performed by the complex function method and the conformal mapping method, which are used to solve the boundary conditions problem, and is used to express the dynamic stress concentration coefficient (DSCC) theoretically. As cases, numerical results of DSCCs are plotted and discussed with different incident wave numbers and material parameters by numerical simulation. Compared with circular openings, elliptical openings are widely used in material processing techniques and are more difficult to solve. Numerical results show that the dynamic stress concentration coefficient at the elliptical opening is strongly dependent on various parameters, which indicates that the elliptical opening is more likely to cause crack and damage to exponential-gradient piezomagnetic materials. Full article
(This article belongs to the Special Issue Smart Materials: Next Generation in Science and Technology)
Show Figures

Figure 1

10 pages, 3470 KiB  
Article
Scattering of Magnetoacoustic Waves and Dynamic Stress Concentration around Double Openings in Piezomagnetic Composites
by Huanhuan Xue, Chuanping Zhou, Gaofei Cheng, Junqi Bao, Maofa Wang, Yongping Gong, Huawei Ji, Wu Yang, Bo Hou, Weihua Zhou, Qiaoyi Wang and Jing Ni
Materials 2021, 14(22), 6878; https://doi.org/10.3390/ma14226878 - 15 Nov 2021
Cited by 2 | Viewed by 1781
Abstract
Based on the magnetoacoustic coupled dynamics theory, the wave function expansion method is used to solve the problem of acoustic wave scattering and dynamic stress concentration around the two openings in e-type piezomagnetic composites. To deal with the multiple scattering between openings, the [...] Read more.
Based on the magnetoacoustic coupled dynamics theory, the wave function expansion method is used to solve the problem of acoustic wave scattering and dynamic stress concentration around the two openings in e-type piezomagnetic composites. To deal with the multiple scattering between openings, the local coordinate method is introduced. The general analytical solution to the problem and the expression of the dynamic stress concentration are derived. As an example, the numerical results of the dynamic stress distribution around two openings with equal diameters are given. The effects of the parameters, such as the incident wave number and the spacing between the openings, on the dynamic stress concentration factor are analyzed. Full article
(This article belongs to the Special Issue Smart Materials: Next Generation in Science and Technology)
Show Figures

Figure 1

17 pages, 5572 KiB  
Article
Detailed Analytical Approach to Solve the Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) Problem for Three-Layer Objects
by Adam Ryszard Zywica, Marcin Ziolkowski and Stanislaw Gratkowski
Energies 2020, 13(24), 6515; https://doi.org/10.3390/en13246515 - 10 Dec 2020
Cited by 8 | Viewed by 2270
Abstract
This paper is devoted to an analytical approach to the magnetoacoustic tomography with magnetic induction (MAT-MI) problem for three-layer low-conductivity objects. For each layer, we determined closed-form analytical expressions for the eddy current density and Lorentz force vectors based on the separation of [...] Read more.
This paper is devoted to an analytical approach to the magnetoacoustic tomography with magnetic induction (MAT-MI) problem for three-layer low-conductivity objects. For each layer, we determined closed-form analytical expressions for the eddy current density and Lorentz force vectors based on the separation of variables method. Next, the analytical formulas were validated with numerical solutions obtained with the help of the finite element method (FEM). Based on the acoustic dipole radiation theory, the influence of the transducer reception pattern on MAT-MI was investigated. To obtain acoustic wave patterns, as a system transfer function we proposed the Morlet wavelet. Finally, image reconstruction examples for objects of more complex shapes are presented, and the influence of the MAT-MI scanning resolution and the presence of the noise on the image reconstruction quality was studied in detail. Full article
Show Figures

Figure 1

23 pages, 6275 KiB  
Review
Electromagnetic–Acoustic Sensing for Biomedical Applications
by Siyu Liu, Ruochong Zhang, Zesheng Zheng and Yuanjin Zheng
Sensors 2018, 18(10), 3203; https://doi.org/10.3390/s18103203 - 21 Sep 2018
Cited by 21 | Viewed by 8364
Abstract
This paper reviews the theories and applications of electromagnetic–acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic [...] Read more.
This paper reviews the theories and applications of electromagnetic–acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic field, and X-ray) and subsequent acoustic wave generation. The applications of EMA methods include structural imaging, blood flowmetry, thermometry, dosimetry for radiation therapy, hemoglobin oxygen saturation (SO2) sensing, fingerprint imaging and sensing, glucose sensing, pH sensing, etc. Several other EM-related acoustic methods, including magnetoacoustic, magnetomotive ultrasound, and magnetomotive photoacoustic are also described. It is believed that EMA has great potential in both pre-clinical research and medical practice. Full article
(This article belongs to the Special Issue Electromagnetic Medical Sensing)
Show Figures

Figure 1

Back to TopTop