Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = magnesium silicide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2202 KiB  
Article
First-Principles Investigation of Electronic and Related Properties of Cubic Magnesium Silicide (Mg2Si)
by Allé Dioum, Yacouba I. Diakité, Yuiry Malozovsky, Blaise Awola Ayirizia, Aboubaker Chedikh Beye and Diola Bagayoko
Computation 2023, 11(2), 40; https://doi.org/10.3390/computation11020040 - 17 Feb 2023
Cited by 4 | Viewed by 2323
Abstract
We present results from ab initio, self-consistent calculations of electronic, transport, and bulk properties of cubic magnesium silicide (Mg2Si). We employed a local density approximation (LDA) potential to perform the computation, following the Bagayoko, Zhao, and Williams (BZW) method, as improved [...] Read more.
We present results from ab initio, self-consistent calculations of electronic, transport, and bulk properties of cubic magnesium silicide (Mg2Si). We employed a local density approximation (LDA) potential to perform the computation, following the Bagayoko, Zhao, and Williams (BZW) method, as improved by Ekuma and Franklin (BZW-EF). The BZW-EF method guarantees the attainment of the ground state as well as the avoidance of over-complete basis sets. The ground state electronic energies, total and partial densities of states, effective masses, and the bulk modulus are investigated. As per the calculated band structures, cubic Mg2Si has an indirect band gap of 0.896 eV, from Γ to X, for the room temperature experimental lattice constant of 6.338 Å. This is in reasonable agreement with the experimental value of 0.8 eV, unlike previous ab initio DFT results of 0.5 eV or less. The predicted zero temperature band gap of 0.965 eV, from Γ to X, is obtained for the computationally determined equilibrium lattice constant of 6.218 Å. The calculated value of the bulk modulus of Mg2Si is 58.58 GPa, in excellent agreement with the experimental value of 57.03 ± 2 GPa. Full article
Show Figures

Figure 1

19 pages, 3723 KiB  
Article
Computer Simulations of Silicide-Tetrahedrite Thermoelectric Generators
by Rodrigo Coelho, Álvaro Casi, Miguel Araiz, David Astrain, Elsa Branco Lopes, Francisco P. Brito and António P. Gonçalves
Micromachines 2022, 13(11), 1915; https://doi.org/10.3390/mi13111915 - 5 Nov 2022
Cited by 2 | Viewed by 2051
Abstract
With global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices [...] Read more.
With global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices must be cheap, efficient, and based on ecofriendly materials. In this study, the potential of novel silicide-tetrahedrite modules for energy generation was examined. Computer simulations based on the finite element method (FEM) and implicit finite difference method (IFDM) were performed. The developed computational models were validated against data measured on a customized system working with commercial TE devices. The models were capable of predicting the TEGs’ behavior with low deviations (10%). IFDM was used to study the power produced by the silicide-tetrahedrite TEGs for different ΔT between the sinks, whereas FEM was used to study the temperature distributions across the testing system in detail. To complement these results, the influence of the electrical and thermal contact resistances was evaluated. High thermal resistances were found to affect the devices ΔT up to ~15%, whereas high electrical contact resistances reduced the power output of the silicide-tetrahedrite TEGs by more than ~85%. Full article
Show Figures

Figure 1

12 pages, 2259 KiB  
Article
Textured Stainless Steel as a Platform for Black Mg2Si/Si Heterojunction Solar Cells with Advanced Photovoltaic Performance
by Alexander V. Shevlyagin, Vladimir M. Il’yaschenko, Aleksandr A. Kuchmizhak, Eugeny V. Mitsai, Andrey V. Amosov, Semyon A. Balagan and Sergei A. Kulinich
Materials 2022, 15(19), 6637; https://doi.org/10.3390/ma15196637 - 24 Sep 2022
Cited by 7 | Viewed by 3028
Abstract
This paper reports on a facile bottom-up method for the direct integration of a silicon (Si)-magnesium silicide (Mg2Si) heterojunction solar cell (HSC) with a textured rear reflector made of stainless steel (SS). Modified wet chemical etching and post processing of SS [...] Read more.
This paper reports on a facile bottom-up method for the direct integration of a silicon (Si)-magnesium silicide (Mg2Si) heterojunction solar cell (HSC) with a textured rear reflector made of stainless steel (SS). Modified wet chemical etching and post processing of SS substrates resulted in the formation of both a rough surface texture and diffusion barrier layer, consisting of magnetite (Fe3O4) with reduced optical reflection. Then, Si, Mg2Si and CaSi2 layers were stepwise thermally evaporated onto the textured SS surface. No traces of Fe and Cr silicide phases were detected by Raman spectroscopy, confirming effective suppression of impurity diffusion from the SS to the upper layers at least at temperatures required for Si deposition, as well as Mg2Si and CaSi2 formation. The obtained black-SS/Fe3O4/Si/Mg2Si/CaSi2 sample preserved, to some extent, its underlying textured morphology and demonstrated an averaged reflection of 15% over the spectral range of 200–1800 nm, while its prototype HSC possessed a wideband photoresponse with a photoelectric conversion efficiency of 7.5% under AM1.5 illumination. Moreover, Si layers deposited alone onto a black-SS substrate demonstrated competitive antireflection properties compared with black Si (b-Si) obtained by traditional top-down etching approaches, and hybrid b-Si/textured-SS structures with a glue-bonded interlayer. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Materials and Structures)
Show Figures

Figure 1

14 pages, 4534 KiB  
Article
Kinetics of Magnesiothermic Reduction of Natural Quartz
by Azam Rasouli, Maria Tsoutsouva, Jafar Safarian and Gabriella Tranell
Materials 2022, 15(19), 6535; https://doi.org/10.3390/ma15196535 - 21 Sep 2022
Cited by 7 | Viewed by 1904
Abstract
In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of [...] Read more.
In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity. Full article
(This article belongs to the Special Issue Advances in Materials Processing (Second Volume))
Show Figures

Figure 1

15 pages, 8896 KiB  
Article
A Carbon-Free Way for Obtaining Nanoscale Silicon
by Nikolay Lyakhov, Tatiana Grigoreva, Tatiana Talako, Tatyana Udalova, Sergey Vosmerikov and Evgeniya Devyatkina
Powders 2022, 1(1), 18-32; https://doi.org/10.3390/powders1010003 - 17 Feb 2022
Cited by 2 | Viewed by 2823
Abstract
The nanosized silicon powder has been produced by reduction of silica with magnesium in an argon medium using both the mechanically activated self-propagating high-temperature synthesis and the direct mechanochemical synthesis and has been investigated by X-ray phase analysis, Infrared spectroscopy, electron scanning microscopy, [...] Read more.
The nanosized silicon powder has been produced by reduction of silica with magnesium in an argon medium using both the mechanically activated self-propagating high-temperature synthesis and the direct mechanochemical synthesis and has been investigated by X-ray phase analysis, Infrared spectroscopy, electron scanning microscopy, and energy dispersive X-ray spectroscopy. The optimal Mg:SiO2 ratio has been found to provide the minimum content of contaminant impurities of magnesium silicide and silicate in mechanically activated self-propagating high-temperature synthesis. For the first time, direct mechanochemical synthesis of Si via reduction of silica with magnesium has been implemented. Optimal component ratio and mechanical activation parameters have been determined, yielding Si/MgO composites without impurity phases (magnesium silicide and silicate). A purification procedure has been proposed for separating silicon obtained from magnesium oxide and other impurity phases. The ratio of initial components has been determined, at which purified silicon has the least amount of impurities. The particle size of silicon powder obtained was 50–80 nm for the mechanically activated self-propagating high-temperature synthesis, and 30–50 nm for the direct mechanochemical synthesis. Full article
(This article belongs to the Special Issue Feature Papers in Powders)
Show Figures

Graphical abstract

11 pages, 4302 KiB  
Communication
Nickel Silicide Catalyst from Photovoltaic Waste for the Methanation Reaction
by Jakub Bumba, Vladislav Drinek, Pavel Krystynik, Pavel Dytrych and Olga Solcova
Minerals 2021, 11(12), 1412; https://doi.org/10.3390/min11121412 - 14 Dec 2021
Cited by 1 | Viewed by 2988
Abstract
A technology designed for recycling photovoltaic (PV) cells at the end of their life was successfully used for the preparation of a nickel silicide catalyst. PV cells were mixed with magnesium scrap to produce magnesium silicide (Mg2Si), with almost total conversion [...] Read more.
A technology designed for recycling photovoltaic (PV) cells at the end of their life was successfully used for the preparation of a nickel silicide catalyst. PV cells were mixed with magnesium scrap to produce magnesium silicide (Mg2Si), with almost total conversion under optimized conditions (400 °C, 5 Pa, 25 min), in a constructed semi-open tubular reactor. Subsequently, magnesium silicide was hydrolyzed by 25% phosphoric acid to produce a mixture of silicon hydrides, which were utilized as chemical vapor deposition (CVD) precursors for the preparation of a nickel silicide catalyst. The activity and stability of the prepared catalyst was repeatedly tested for methanation reactions. It was verified that the nickel silicide catalyst showed an approximately 20% higher activity for the methanation reactions compared to the commonly used nickel catalyst. Full article
Show Figures

Figure 1

18 pages, 8499 KiB  
Article
Application of Nanosilicon to the Sintering of Mg-Mg2Si Interpenetrating Phases Composite
by Anita Olszówka-Myalska, Hanna Myalska, Patryk Wrześniowski, Jacek Chrapoński and Grzegorz Cios
Materials 2021, 14(23), 7114; https://doi.org/10.3390/ma14237114 - 23 Nov 2021
Cited by 5 | Viewed by 2494
Abstract
The new in situ fabrication process for Mg-Mg2Si composites composed of interpenetrating metal/intermetallic phases via powder metallurgy was characterized. To obtain the designed composite microstructure, variable nanosilicon ((n)Si) (i.e., 2, 4, and 6 vol.% (n)Si) concentrations were mixed with magnesium powders. [...] Read more.
The new in situ fabrication process for Mg-Mg2Si composites composed of interpenetrating metal/intermetallic phases via powder metallurgy was characterized. To obtain the designed composite microstructure, variable nanosilicon ((n)Si) (i.e., 2, 4, and 6 vol.% (n)Si) concentrations were mixed with magnesium powders. The mixture was ordered using a sonic method. The powder mixture morphologies were characterized using scanning electron microscopy (SEM), and heating and cooling-induced thermal effects were characterized using differential scanning calorimetry (DSC). Composite sinters were fabricated by hot-pressing the powders under a vacuum of 2.8 Pa. Shifts in the sintering temperature resulted in two observable microstructures: (1) the presence of Mg2Si and MgO intermetallic phases in α-Mg (580 °C); and (2) Mg2Si intermetallic phases in the α-Mg matrix enriched with bands of refined MgO (640 °C). Materials were characterized by light microscopy (LM) with quantitative metallography, X-ray diffraction (XRD), open porosity measurements, hardness testing, microhardness testing, and nanoindentation. The results revealed that (n)Si in applied sintering conditions ensured the formation of globular and very fine Mg2Si particles. The particles bonded with each other to form an intermetallic network. The volume fraction of this network increased with (n)Si concentration but was dependent on sintering temperature. Increasing sintering temperature intensified magnesium vaporization, affecting the composite formation mechanism and increasing the volume fraction of silicide. Full article
(This article belongs to the Special Issue Advances in Metal and Ceramic Matrix Composites)
Show Figures

Graphical abstract

21 pages, 71784 KiB  
Article
Analysis and Design of a Silicide-Tetrahedrite Thermoelectric Generator Concept Suitable for Large-Scale Industrial Waste Heat Recovery
by F. P. Brito, João Silva Peixoto, Jorge Martins, António P. Gonçalves, Loucas Louca, Nikolaos Vlachos and Theodora Kyratsi
Energies 2021, 14(18), 5655; https://doi.org/10.3390/en14185655 - 8 Sep 2021
Cited by 8 | Viewed by 2475
Abstract
Industrial Waste Heat Recovery (IWHR) is one of the areas with strong potential for energy efficiency and emissions reductions in industry. Thermoelectric (TE) generators (TEGs) are among the few technologies that are intrinsically modular and can convert heat directly into electricity without moving [...] Read more.
Industrial Waste Heat Recovery (IWHR) is one of the areas with strong potential for energy efficiency and emissions reductions in industry. Thermoelectric (TE) generators (TEGs) are among the few technologies that are intrinsically modular and can convert heat directly into electricity without moving parts, so they are nearly maintenance-free and can work unattended for long periods of time. However, most existing TEGs are only suitable for small-scale niche applications because they typically display a cost per unit power and a conversion efficiency that is not competitive with competing technologies, and they also tend to rely on rare and/or toxic materials. Moreover, their geometric configuration, manufacturing methods and heat exchangers are often not suitable for large-scale applications. The present analysis aims to tackle several of these challenges. A module incorporating constructive solutions suitable for upscaling, namely, using larger than usual TE elements (up to 24 mm in diameter) made from affordable p-tetrahedrite and n-magnesium silicide materials, was assessed with a multiphysics tool for conditions typical of IWHR. Geometric configurations optimized for efficiency, power per pair and power density, as well as an efficiency/power balanced solution, were extracted from these simulations. A balanced solution provided 0.62 kWe/m2 with a 3.9% efficiency. Good prospects for large-scale IWHR with TEGs are anticipated if these figures could be replicated in a real-world application and implemented with constructive solutions suitable for large-scale systems. Full article
(This article belongs to the Special Issue Waste Heat Recovery Using Thermoelectric Generators)
Show Figures

Graphical abstract

11 pages, 4726 KiB  
Article
Formation of Mo5Si3/Mo3Si–MgAl2O4 Composites via Self-Propagating High-Temperature Synthesis
by Chun-Liang Yeh and Yin-Chien Chen
Molecules 2020, 25(1), 83; https://doi.org/10.3390/molecules25010083 - 24 Dec 2019
Cited by 13 | Viewed by 2786
Abstract
In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). [...] Read more.
In situ formation of intermetallic/ceramic composites composed of molybdenum silicides (Mo5Si3 and Mo3Si) and magnesium aluminate spinel (MgAl2O4) was conducted by combustion synthesis with reducing stages in the mode of self-propagating high-temperature synthesis (SHS). The SHS process combined intermetallic combustion between Mo and Si with metallothermic reduction of MoO3 by Al in the presence of MgO. Experimental evidence showed that combustion velocity and temperature decreased with increasing molar content of Mo5Si3 and Mo3Si, and therefore, the flammability limit determined for the reaction at Mo5Si3 or Mo3Si/MgAl2O4 = 2.0. Based upon combustion wave kinetics, the activation energies, Ea = 68.8 and 63.8 kJ/mol, were deduced for the solid-state SHS reactions producing Mo5Si3– and Mo3Si–MgAl2O4 composites, respectively. Phase conversion was almost complete after combustion, with the exception of trivial unreacted Mo existing in both composites and a minor amount of Mo3Si in the Mo5Si3–MgAl2O4 composite. Both composites display a dense morphology formed by connecting MgAl2O4 crystals, within which micro-sized molybdenum silicide grains were embedded. For equimolar Mo5Si3– and Mo3Si–MgAl2O4 composites, the hardness and fracture toughness are 14.6 GPa and 6.28 MPa m1/2, and 13.9 GPa and 5.98 MPa m1/2, respectively. Full article
(This article belongs to the Special Issue Intermetallics: Synthesis, Structure, Function)
Show Figures

Figure 1

16 pages, 4457 KiB  
Article
Impact of the Morphology of Micro- and Nanosized Powder Mixtures on the Microstructure of Mg-Mg2Si-CNT Composite Sinters
by Anita Olszówka-Myalska, Patryk Wrześniowski, Hanna Myalska, Marcin Godzierz and Dariusz Kuc
Materials 2019, 12(19), 3242; https://doi.org/10.3390/ma12193242 - 4 Oct 2019
Cited by 14 | Viewed by 3072
Abstract
The problem of preparing a ternary powder mixture, which was meant to fabricate sintered heterophase composite, and consisted of micro- and two nanosized powders, was analyzed. The microsized powder was a pure magnesium, and as nanocomponents, a silicon powder (nSi) and carbon nanotubes [...] Read more.
The problem of preparing a ternary powder mixture, which was meant to fabricate sintered heterophase composite, and consisted of micro- and two nanosized powders, was analyzed. The microsized powder was a pure magnesium, and as nanocomponents, a silicon powder (nSi) and carbon nanotubes (CNTs) with 2% and 1% volume fractions, respectively, were applied. The powder mixtures were prepared using ultrasonic and mechanical mixing in technological fluid, and four mixing variants were applied. The morphology of the powder mixtures was characterized with scanning electron microscopy (SEM), and then, composite sinters were fabricated in a vacuum with hot temperature pressing at 580 °C under 15 MPa pressure, using a Degussa press. The reaction between the nSi and the Mg matrix, which caused the creation of the Mg2Si phase in the fabricated Mg-Mg2Si-CNT composite, was confirmed with X-ray diffraction (XRD). The porosity and hardness of the composite sinters were examined, and optical microscopy (OM) and quantitative image analyses were carried out to characterize the microstructure of the composites. In the manufacturing process of the Mg-nSi-CNT mixtures, the best results were the following: first separate de-agglomeration of nanocomponents, then their common mixing, and finally, the deposition of nanocomponents at the surface of the microsized magnesium powder. The applied procedure ensured the uniform layer formation of de-agglomerated nanocomponents on the Mg powder, without re-agglomerated nSi and CNTs. Moreover, this type of powder mixture morphology allows to obtain sinters with lower porosity and higher hardness, which is accompanied by precipitation of a finer Mg2Si phase. In the Mg-Mg2Si-CNT composite, the carbon phase was present, and it was located in the magnesium matrix and in silicide. Full article
(This article belongs to the Collection Advanced Powder Metallurgy Technologies)
Show Figures

Graphical abstract

11 pages, 4112 KiB  
Article
Oxidation Protective Hybrid Coating for Thermoelectric Materials
by Francesco Gucci, Fabiana D’Isanto, Ruizhi Zhang, Michael J. Reece, Federico Smeacetto and Milena Salvo
Materials 2019, 12(4), 573; https://doi.org/10.3390/ma12040573 - 14 Feb 2019
Cited by 16 | Viewed by 4024
Abstract
Two commercial hybrid coatings, cured at temperatures lower than 300 °C, were successfully used to protect magnesium silicide stannide and zinc-doped tetrahedrite thermoelectrics. The oxidation rate of magnesium silicide at 500 °C in air was substantially reduced after 120 h with the application [...] Read more.
Two commercial hybrid coatings, cured at temperatures lower than 300 °C, were successfully used to protect magnesium silicide stannide and zinc-doped tetrahedrite thermoelectrics. The oxidation rate of magnesium silicide at 500 °C in air was substantially reduced after 120 h with the application of the solvent-based coating and a slight increase in power factor was observed. The water-based coating was effective in preventing an increase in electrical resistivity for a coated tethtraedrite, preserving its power factor after 48 h at 350 °C. Full article
(This article belongs to the Special Issue Advanced Glasses, Composites and Ceramics for High Growth Industries)
Show Figures

Figure 1

17 pages, 356 KiB  
Review
Extrapolation of Transport Properties and Figure of Merit of a Thermoelectric Material
by H. Julian Goldsmid and Jeff Sharp
Energies 2015, 8(7), 6451-6467; https://doi.org/10.3390/en8076451 - 26 Jun 2015
Cited by 16 | Viewed by 6522
Abstract
The accurate determination of the thermoelectric properties of a material becomes increasingly difficult as the temperature rises. However, it is the properties at elevated temperatures that are important if thermoelectric generator efficiency is to be improved. It is shown that the dimensionless figure [...] Read more.
The accurate determination of the thermoelectric properties of a material becomes increasingly difficult as the temperature rises. However, it is the properties at elevated temperatures that are important if thermoelectric generator efficiency is to be improved. It is shown that the dimensionless figure of merit, ZT, might be expected to rise with temperature for a given material provided that minority carrier conduction can be avoided. It is, of course, also necessary that the material should remain stable over the whole operating range. We show that the prediction of high temperature properties in the extrinsic region is possible if the temperature dependence of carrier mobility and lattice thermal conductivity are known. Also, we show how the undesirable effects arising from mixed or intrinsic conduction can be calculated from the energy gap and the relative mobilities of the electrons and the positive holes. The processes involved are discussed in general terms and are illustrated for different systems. These comprise the bismuth telluride alloys, silicon-germanium alloys, magnesium-silicon-tin and higher manganese silicide. Full article
(This article belongs to the Special Issue Thermoelectric Energy Harvesting)
Show Figures

Figure 1

Back to TopTop