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Abstract: The accurate determination of the thermoelectric properties of a material becomes 

increasingly difficult as the temperature rises. However, it is the properties at elevated 

temperatures that are important if thermoelectric generator efficiency is to be improved. It is 

shown that the dimensionless figure of merit, ZT, might be expected to rise with temperature 

for a given material provided that minority carrier conduction can be avoided. It is, of course, 

also necessary that the material should remain stable over the whole operating range. We 

show that the prediction of high temperature properties in the extrinsic region is possible if 

the temperature dependence of carrier mobility and lattice thermal conductivity are known. 

Also, we show how the undesirable effects arising from mixed or intrinsic conduction can be 

calculated from the energy gap and the relative mobilities of the electrons and the positive 

holes. The processes involved are discussed in general terms and are illustrated for  

different systems. These comprise the bismuth telluride alloys, silicon-germanium alloys, 

magnesium-silicon-tin and higher manganese silicide. 

Keywords: thermoelectric; generation; semiconductors; energy conversion; energy gap; 

intrinsic conduction; extrinsic conduction 
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1. Introduction 

There is increasing interest in the use of thermoelectric generation to convert heat into electrical 

energy. As for other types of heat engine, the efficiency of a thermoelectric generator depends on the 

temperature difference between the source and the sink, so it is desirable that the source of heat be at as 

high a temperature as possible. It is necessary, therefore, that the Seebeck coefficient, α, the electrical 

conductivity, σ, and the thermal conductivity, λ, be known at high temperatures. These quantities are 

combined in what is known as the figure of merit [1], Z, which is defined as α2σ/λ, usually appearing in 

its dimensionless form, ZT. 

In actual fact, the figure of merit should really be defined for a pair of thermoelements having 

Seebeck coefficients of opposite sign [2]. Thus, 

α α

λ
/

λ /
 (1) 

where the subscripts p and n denote the two types of material. The maximum efficiency, ϕ, of the couple 

is given by: 

ϕ
1

⁄
 (2) 

where M = (1 + ZT)1/2. It is supposed that the temperature difference, (T1 − T2), between the source and 

sink is rather small compared with the absolute temperature, or else some sort of averaging process must 

be used in expressing M. 

The ratio (T1 − T2)/T1 is the efficiency of a Carnot cycle operating between these temperatures. It is 

clear that the efficiency also depends on the quantity M and, thus, on ZT. 

It is convenient for us to select the positive and negative materials separately, and it is usual for ZT to 

be optimised for a single material, with the value of ZT for a couple then being taken as the average for 

the two branches, usually a good approximation. The value of ZT for a single material is indeed the 

relevant quantity in Equation (2) if the ratio of electrical to thermal conductivity is very large, as it is 

when the second branch is a superconductor [3,4], but this does not become a consideration at the 

appropriate temperatures for thermoelectric generation. 

Thermoelectric modules for refrigeration using the Peltier effect are widely available. They usually 

consist of positive and negative thermoelements made from alloys of bismuth telluride with antimony 

telluride and bismuth selenide [5]. The composition of the alloys is generally optimised so that the figure 

of merit, ZT, is highest near or below room temperature. These modules are often employed for 

thermoelectric generation when the temperature of the heat source is not too high. As the temperature is 

raised, alloys of similar composition may be used but the carrier concentrations should be modified by 

doping so that ZT is optimised for a different region. It may also be necessary to change the construction 

of the module so that it can withstand the rise in temperature. 

There is obviously a temperature above which the bismuth telluride alloys can no longer be used and 

other compounds and alloys are needed. These, in turn, have to be replaced when the temperature of the 

source is further increased. Clearly, then, there are several different systems of materials that must be 

investigated in designing thermoelectric generators, in contrast with the situation in thermoelectric 
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refrigeration. Although the figure of merit remains the most important parameter, it also may be 

necessary to take account of the compatibility factor [6] when different materials are incorporated in  

the modules. 

The accurate measurement of the thermoelectric properties of any material becomes more and more 

difficult as the temperature rises [7,8]. Very often the published data cover only a limited range. Thus,  

it is useful to be able to estimate the high temperature properties from observations at much  

lower temperatures. 

It is evident that a thermoelectric material that is the best over a certain range will not necessarily be 

superior at some higher temperature. It may be subject to a phase change, chemical deterioration or, 

perhaps, melting. However, even if such events do not occur, the thermoelectric properties may 

themselves fall away. At the very least, one would expect to have to change the doping level to restore 

the Fermi energy to its optimum value. Also, unless the energy gap is large enough, one would expect 

deterioration in the figure of merit to result from the presence of minority carriers. To some extent, the 

effect of minority carriers can be reduced by increasing the concentration of dopant; the optimum 

Seebeck coefficient becomes lower when the energy gap is small enough for minority carrier conduction 

to be a factor. 

We shall first show how the thermoelectric parameters will change with rise of temperature when 

there is only one type of carrier. We shall then determine the effects of minority carrier conduction when 

the energy gap is too small to prevent their appearance. Finally, we shall illustrate the principles that we 

have outlined for some typical systems, including the bismuth telluride alloys, silicon-germanium alloys, 

magnesium-silicon-tin and higher manganese silicides. 

2. Variation of the Thermoelectric Properties with Temperature for an Extrinsic Conductor 

Let us suppose that the transport properties for a given material have been determined over a specific 

temperature range, and that it is desired to predict the thermoelectric performance above this region. 

From the lower temperature properties one should be able to determine the quantity known as  that was 

first defined by Chasmar and Stratton [9] as (k/e)2σ0T/λL, where σ0 is equal to 2eμ(2πm*kT/h2)3/2. Here μ 

is the mobility of the majority carriers, λL is the lattice thermal conductivity, and m* is the  

density-of-states effective mass. The quantity, , is not constant, since the carrier mobility and the lattice 

thermal conductivity depend on temperature. Thus, we need to predict the temperature-variation of both 

quantities. There may also be a change in the effective mass and the emergence of extra bands but,  

for the moment, we concentrate on μ and λL. 

It is helpful to discuss the figure of merit, Z, as the ratio of a quantity known as the power factor α2σ 

to the thermal conductivity, λ. The power factor depends solely on the electronic properties of the 

material whereas the thermal conductivity includes, and may be dominated by, the lattice contribution. 

The calculations are simplest when acoustic-mode lattice scattering of the carriers takes place, since 

the mobility is then proportional to T−3/2 and σ0 is independent of temperature, provided that the effective 

mass is constant. The electrical conductivity for a given value of the Seebeck coefficient should not 

change with temperature. The temperature dependence of ZT is then controlled by the thermal 

conductivity, which is the sum of λL and the electronic component λe. 
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λe is equal to LσT, where the Lorenz number, L, is given by A(k/e)2, with the factor A equal to π2/3 for 

a degenerate conductor. When acoustic mode lattice scattering is dominant, A is equal to 2 in a  

non-degenerate conductor and is somewhat higher in a partially degenerate material.
For a pure crystalline material, the lattice conductivity varies as T−1 and  is proportional to T2.  

On the other hand, when point defect scattering of the phonons is completely dominant, we might expect 

λL to be independent of temperature and  to vary as T. Usually, the lattice thermal conductivity for a 

thermoelectric material will decrease as the temperature rises but not as rapidly as 1/T. For most 

semiconductors the lattice contribution to the thermal conductivity predominates over the electronic 

component but this is not necessarily true for thermoelectric materials. Nevertheless, it is not expected 

that the total thermal conductivity will rise with temperature, so ZT should become greater as T increases. 

Once the variation with temperature of the carrier mobility and the lattice conductivity are known, it is 

a straightforward matter to calculate the thermoelectric properties at any temperature provided that 

minority carriers are absent. It must be borne in mind, though, that the optimum carrier concentration 

usually corresponds to a Fermi energy that is close to the edge of the conduction or valence band.  

In other words, the optimised material will almost certainly lie in the region of partial degeneracy. 

The Seebeck coefficient, the electrical conductivity and the electronic thermal conductivity can all be 

expressed in terms of a set of integrals of the form 

8
3

2 ⁄
∗ ⁄ 3 2⁄ ⁄

⁄  (3)

where 

ξ ξ  (4)

Here the reduced energy, ξ, is equal to E/kT. The functions Fn are the Fermi-Dirac integrals and have 

been tabulated [1,10,11] for different values of the reduced Fermi energy, η, which is equal to EF/kT. 

When there is only one type of carrier, the expressions for the electrical conductivity, σ, the electronic 

thermal conductivity, λe, and the Seebeck coefficient, α, in terms of the integrals, Ks, are: 

σ  (5)

1
 (6)

and 

α
1

 (7)

where the upper sign applies for electrons and the lower sign for holes. The total thermal conductivity λ 

is equal to λe + λL, where λL is the lattice component. Thus, these equations allow us to determine the 

figure of merit. 
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3. Determination of the Thermoelectric Properties in the Mixed Conduction Regime 

We now turn to the calculation of the different parameters when the energy gap, Eg, is small enough 

for minority carriers to be influential even for optimal η. We shall need to know both Eg and a quantity 

that we shall call c, the ratio of  for the minority carriers to its value for the majority carriers. 

It is obvious that minority carriers are undesirable since the electrons and holes have partial Seebeck 

coefficients of opposite sign. The magnitude of the overall Seebeck coefficient is then less than if only 

the majority carriers existed. Less obvious, but also important, is the bipolar contribution to the electronic 

thermal conductivity. When both electrons and holes are present, they can carry their activation energy 

(approximately equal to the energy gap), along the direction of the temperature gradient, without there 

being any net electric current. The bipolar thermal conductivity can be more than an order of magnitude 

greater than the electronic thermal conductivity calculated using the normal Lorenz number. 

The energy gap may be estimated in a number of ways. For example, it can be found from the  

infra-red absorption edge or from the temperature dependence of the Hall coefficient. However, the most 

appropriate method for our purposes would seem to be that which requires the measurement of  

the maximum Seebeck coefficient as a function of temperature [12,13]. This method of estimating the 

energy gap has recently been discussed in detail by Gibbs et al. [14]. 

The maximum Seebeck coefficient depends primarily on the energy gap, but it also depends on the 

ratio, c, of the  values of the two carrier types, though it is to be hoped that c may not need to be known 

accurately. Surprisingly, there seem to be few semiconductors for which c is greatly different from unity [15]. 

For example, in Bi2Te3, c is equal to 0.94. However, there is a large difference in the  values for the two 

types of carrier in Ge for which c is equal to 0.18 (when the holes are the minority carriers). Although the 

energy gap is the major factor in determining the thermoelectric properties in the near intrinsic region, 

we cannot ignore the influence of c. 

Expressions for the electrical and thermal conductivity and the Seebeck coefficient when there are 

two types of carrier can be found in review articles and textbooks on thermoelectricity [1]. 

When both types of carrier are present, the electrical conductivity is given by 

σ σ σ  (8)

the Seebeck coefficient by 

α
α σ α σ
σ σ

 (9)

and the electronic thermal conductivity by 

λ λ λ
σ σ
σ σ

α α  (10)

Equations (8)–(10) allow us to calculate the figure of merit ZT in a mixed or intrinsic conductor. 

It is noted that the various parameters are often expressed in dimensionless forms. For example,  

the Seebeck coefficients may be given in terms of k/e, which is equal to 86.2 μV/K. Likewise,  

the dimensionless energy gap, ηg, is equal to Eg/kT. These dimensionless forms are used when 

convenient in the remainder of this article. 
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4. Estimation of the Band Gap and the Effect of the Parameter c 

We now discuss the determination of the band gap from the maximum Seebeck coefficient for a 

material such as germanium in which the parameter c is not close to unity. We have calculated 2αmax/ηg 

for energy gaps from 5 kT to 30 kT and for c from 0.2 up to 5. The results are shown in Figure 1. 

 

Figure 1. Plots of 2αmax/ηg against ηg for various values of the parameter c. 

The so-called Goldsmid-Sharp method for determining the energy gap clearly becomes inaccurate 

when the energy gap is smaller than about 20 kT. However, when c = 1, 2αmax and ηg are almost equal, 
the ratio 2αmax/ηg being about 0.96 for a wide range of ηg. In other words, if c ≃ 1, we can generally 

suppose that the true dimensionless thermal gap is close to 2αmax/0.96, which for practical purposes can 

be taken as 2αmax. 

We have not been able to identify any potential thermoelectric generator material with c outside the 

limits of about 0.2 and 5, though, of course, semiconductors with such values of c do exist. Near these 

extremes 2αmax/ηg varies quite considerably with the gap width. In the absence of knowledge of c for a 

particular material, we might set c = 1 and the apparent dimensionless energy gap equal to 2αmax. 

From the practical viewpoint it would be best to determine the maximum Seebeck coefficient for both 

n-type and p-type material. One could then get a reliable value of both the energy gap and c. Noting that 

c = 0.2 for one type of carrier implies c = 5 for the other type, we see that the geometric mean of the two 

values of 2αmax/ηg is almost equal to unity even when ηg is as small as 5. 
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5. Thermoelectric Generation Using the Alloys of Bismuth Telluride 

Although the efficiency of conversion from heat to electricity generally improves as the temperature 

of the source rises, there are many applications that exploit the ability of thermoelectric generators to 

operate at low source temperatures [16,17]. In such applications, the generator is likely to be made from 

alloys of bismuth telluride [18], though the dopant levels will be different from those in materials for 

refrigeration modules [19,20]. 

In the bismuth telluride alloys there are some problems that arise when one attempts to extrapolate to 

the high temperature properties from low temperature data. For example, the data vary from one author 

to another depending on the processes that have been used in preparing the thermoelectric material. Also, 

even at low temperatures, the accurate determination of the thermoelectric properties is not easy. 

Clearly, then, any extrapolation applies only for samples prepared by a particular technique. However, 

even though the absolute value of a particular property may be uncertain, the determination of the ratio of 

this parameter at different temperatures should be more precise. 

It is generally thought that acoustic-mode lattice scattering is predominant in bismuth telluride and its 

alloys. If we assume that the carriers reside in a single parabolic band, the plot of Seebeck coefficient 

against log T in the classical extrinsic region should be linear with a slope equal to 3k/2e. Moreover, the 

carrier mobility in the same region should be proportional to T−3/2. Neither of these features is strictly 

displayed by either n-type or p-type bismuth telluride. Nevertheless, the prediction that the electrical 

conductivity for a given Seebeck coefficient should be independent of temperature is quite accurate, as 

shown in Table 1. However, even for bismuth telluride, it is probably best to extrapolate from the 

observed temperature variation of mobility rather than the theoretical behaviour. 

Table 1. Electrical conductivity of n-type and p-type Bi2Te3 at different temperatures for a 

given Seebeck coefficient, chosen as −170 μV/K for n-type material and 160 μV/K for  

p-type material. 

Type σ at 150 K σ at 300 K Ratio of conductivities, σ300/σ150 

n 1.5 × 105 ohm−1m−1 1.65 × 105 ohm−1m−1 1.10 
p 1.55 × 105 ohm−1m−1 1.4 × 105 ohm−1m−1 0.90 

Unlike many other thermoelectric materials, bismuth telluride is anisotropic, with both the carrier 

mobility and the lattice conductivity being dependent on the direction of transport [21]. Because the ratio 

of the hole mobility in the c direction to the a direction happens to be almost the same (about  

one-half) as the ratio of the lattice conductivities, the figure of merit of p-type material is almost 

independent of direction. However, the mobility of electrons in the c direction is no more than about one-

quarter of that along the a axis so that the highest figure of merit for n-type bismuth telluride is only 

reached for aligned material. Single crystals are not needed provided that the grains are all aligned with 

the a axes parallel to a certain direction. The degree of crystallographic alignment must be taken into 

account in predicting the high temperature properties. 

A feature of bismuth telluride that is particularly relevant when it is used in power generation is the 

rather small energy gap [22,23]. At 300 K the gap is no more than about 5 kT in width so that, even at 

this temperature, minority carrier effects must be taken into account when optimising the doping level 
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and, thus, the Seebeck coefficient. As the temperature rises, the effect of the minority carriers on both the 

Seebeck coefficient and the electronic thermal conductivity becomes increasingly important [24,25]. 

Figures 2 and 3 show the variation of ZT with temperature for selected p-type and n-type materials, 

respectively. In all the examples, ZT rises with temperature at first and then falls off as bipolar effects 

make themselves felt. Both the rise at low temperatures and the falling off at higher temperatures are 

consistent with our theoretical expectations. It should be noted that the lower curve in Figure 3 represents 

early observations (published over 40 years ago), but it is included since a wider range of temperature is 

covered than that in most reports. 

 

Figure 2. Plot of ZT against T for selected p-type bismuth telluride alloys. The upper curve 

shows the observations of Xie et al. [26] on nanocomposites made by melt spinning and 

spark-plasma sintering. The lower curve shows the data of Li et al. [27] on  

bismuth-antimony telluride prepared by mechanical alloying and spark plasma sintering. 

 

Figure 3. Plot of ZT against T for selected n-type bismuth telluride alloys. The upper curve 

shows the observations of Wu et al. [28]. The lower curve shows the early data of 

Imamuddin and Dupre [29] on bismuth seleno-telluride. 
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Both figures make it clear that appreciably higher values of ZT would be obtained at higher 

temperatures if minority carrier conduction could be suppressed to some extent by increasing the  

energy gap. 

It has long been established that the energy gap increases as the selenium content in bismuth  

seleno-telluride alloys is increased [30], as shown in Figure 4, and, for these alloys, the lattice 

conductivity is lower than that of bismuth telluride itself. Nevertheless, the selenium content in the  

n-type bismuth seleno-telluride alloys used in refrigeration modules rarely exceeds 10% because of a 

reduction in the electron mobility at higher concentrations. However, it is likely that bismuth telluride 

alloys for generation should contain an increased level of selenium. Hopefully, the larger energy gap 

might compensate for any fall in the mobility. 

 

Figure 4. Schematic plot of energy gap against molar percentage of bismuth selenide in 

bismuth seleno-telluride alloys. 

The p-type bismuth telluride alloys in refrigeration modules are normally based on the composition 

Bi0.5Sb1.5Te3. For many years it was thought that the energy gap in Sb2Te3 was smaller than that of 

Bi2Te3, since it is difficult to obtain a Seebeck coefficient as high as 200 μV/K in this compound. 

However, recent work suggests that this is a problem arising from considerable lack of stoichiometry;  

it is difficult to achieve doping that will compensate for an excess of antimony. Recently a Seebeck 

coefficient of 200 μV/K at 500 K has been observed by Sun et al. [31] indicating that the energy gap of 

Sb2Te3 may actually be larger than that of Bi2Te3. It may, therefore, be possible to improve the value of 

ZT in bismuth telluride alloys at high temperatures by increasing both the selenium and antimony 

concentrations. Be that as it may, it has been claimed that ZT exceeding unity can be achieved in bismuth 

telluride alloys up to a temperature of at least 500 K. 

It might also be possible to increase the Seebeck coefficient at high temperatures by introducing 

ionized impurity scattering since this would enlarge the average energy transported by the charge  

carriers [32]. However, it remains to be demonstrated that this effect can bring any overall benefit. 

It is interesting to look at the relative magnitudes of the electronic and lattice contributions to the 

thermal conductivity in the bismuth telluride alloy system. We consider material that has a Seebeck 

coefficient of 2.5k/e, that is 216 μV/K, a value that must be close to the optimum. It is then found that the 

electronic component is about one-half of the lattice conductivity. The lattice conductivity is influenced 
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by both phonon-phonon scattering and alloy scattering. As a reasonable approximation, we can suppose 

that the lattice thermal resistivity can be calculated as the sum of the resistivities due to both forms of 

scattering. Thus, the total thermal conductivity is made up partly of an electronic contribution that rises 

with temperature, at the optimised Seebeck coefficient, and a lattice component, the temperature 

dependence of which lies between T−1 and T0. It is then not unreasonable to assume that the total thermal 

conductivity is more or less independent of temperature. Since the optimised power factor is also 

approximately independent of temperature, we expect ZT to be proportional to T for optimised material. 

For ZT plots of single samples, as in Figures 2 and 3, we can expect ZT to increase faster than T up to the 

point at which the optimum Seebeck coefficient is reached. 

6. Application to Silicon-Germanium 

Si-Ge is a thermoelectric generator material that is used at moderately high temperatures.  

Basu et al. [33] reported a very large value of ZT for Si80Ge20 that was prepared by a hot-press sintering 

technique. There is the suggestion that the material is nanostructured. One of the features of this work is 

the claim that ZT is equal to 1.84 at 1073 K. The results of measurements on the thermoelectric 

parameters from room temperature up to about 1100 K are given. We have attempted to fit the data of 

Basu et al. to our calculations of the figure of merit at high temperatures, from the observed properties at 

low temperatures. The properties were found to vary according to the ball-milling time and we use the 

results for the (best) sample made from powders milled for 72 h. 

According to Basu et al., the material displaying ZT = 1.84 at high temperatures had a ZT value of 0.2 

at 300 K with a Seebeck coefficient of −1.68k/e. This implies a value of the parameter  for n-type 

material at this temperature of 0.06. The review of Si-Ge by Vining [34] gives the energy gap of 0.99 eV 

and the solidus temperature (which presumably sets an upper limit to the operating range) is 1550 K. The 

parameter c, equal to p/n, will have little influence but a value of 0.5 is probably appropriate for alloys 

of the composition selected. 

The only question that remains, then, is the variation of n with temperature. Since the alloy has a 

much lower lattice thermal conductivity than either Si or Ge we might expect λL to be more or less 

independent of temperature. In this case, n would be proportional to T if acoustic mode lattice scattering 

of the electrons were the only mechanism. However, this would lead to a value for ZT at 1100 K of only 

0.59. The observations of Basu et al. fit much better to the assumption that n is proportional to T2 or that 

there is an even stronger temperature-dependence. In Figure 5, we show the variation of ZT with 

temperature from Basu’s data and from our calculations. 
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Figure 5. Plot of ZT against temperature for Si80Ge20. The top curve is from the results of 

Basu et al. [33]. The bottom curve is a calculation based on the assumption that n is 

proportional to T and the middle curve is for n proportional to T2. 

It is noted that similar though somewhat lower ZT results than those of Basu et al. have been reported 

previously by Bathula et al. [35] and Wang et al. [36]. The values of ZT at 900 °C (1173 K) given by 

these authors are 1.45 and 1.3 respectively. From the data of these authors, it also appears that n is 

approximately proportional to T2. 

We can see how the variation of n with temperature arises when we look at the observations of 

Bathula et al. The lattice conductivity is not quite independent of temperature as it changes from  

1.8 W/m K at 300 K to 1.6 W/m K at 600 K. However, the main factor that controls the temperature 

dependence of n is the quantity σ0, that is 2eμ(2πm*kT/h2)3/2. For acoustic-mode lattice scattering the 

carrier mobility should be proportional to T-3/2, which would mean a reduction by a factor of 2.8 over the 

temperature range 300 to 600 K. The results of Bathula et al. show that the actual factor is only 1.4. 

Presumably, the relatively slow change of mobility with temperature and the significant change of lattice 

conductivity combine to yield the close to T2 dependence for n. 

This study of Si-Ge indicates that the dependence of n on temperature is a parameter that needs to be 

known in predicting ZT at high temperatures. 

Incidentally, if the data provided by Basu et al. are reliable it is reasonable to expect that ZT will rise 

above 2 at temperatures above 1200 K for suitably processed Si-Ge. 

7. Application to Magnesium-silicon-tin 

One of the potential thermoelectric generator materials is Mg2Si0.7Sn0.3. This alloy is featured in a 

review article by Zaitsev et al. [37]. The thermoelectric properties have been measured in the 

temperature range up to 850 K. The energy gap of 0.65 eV is not really small enough for bipolar effects 

to be observed at these temperatures but we need to take into account the fact that the lattice thermal 

resistivity has comparable contributions from alloy scattering and phonon-phonon scattering. We have 

set c = 1 but the value of this parameter does not affect the results to any significant extent. 
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The particular solid solution in which we are interested has a ZT value of 0.85 at 800 K. The Seebeck 

coefficient of the sample for which comprehensive data are presented is −195 μV/K, which is −2.76 k/e. 

At 400 K the same sample has a Seebeck coefficient of −110 μV/K, which is −1.29k/e, and ZT equal to 

0.25. This allows us to set n equal to 0.11 at 400 K. 

The paper by Zaitsev et al. gives the lattice thermal resistivity for a whole range of solid solutions at 

300 K. As one would expect, the thermal resistivity is lowest for the pure compounds Mg2Si and Mg2Sn 

and is highest for solid solutions with comparable concentrations of the two components. If we assume 

that the thermal resistivity due to phonon-scattering is that for the pure compound, the remaining 

resistivity is due to alloy scattering. The phonon-phonon component should be proportional to 

temperature while the alloy scattering component should be independent of temperature. The 

observations on Mg2Si0.7Sn0.3 are fitted by a lattice thermal resistivity equal to (0.14T/300 + 0.36) m K/W. 

We have calculated the behaviour of ZT at elevated temperatures from the value at 400 K using  

3 different assumptions: 

(1) n proportional to T (what one would expect if the lattice conductivity were independent of T). 

(2) n proportional to T2 (to be expected if the lattice conductivity varied as 1/T). 

(3) n proportional to T(0.14T/300 + 0.36). 

Assumption (3) should hold for the two different phonon-scattering mechanisms and for the quantity 

σ0 being independent of temperature. 

Figure 6 shows ZT plotted against T for the 3 different assumptions together with the observed 

behaviour as given in the paper by Zaitsev et al. The variation of ZT with T for Assumption (3) is very 

close to the experimental results. We can, therefore, predict ZT for optimized samples up to the melting 

temperature with some confidence using Assumption (3). This has been done in Figure 7 up to 1050 K. 

We do not know the solidus temperature for Mg2Si0.7Sn0.3, but it is likely to be higher than the melting 

point of Mg2Sn, 1051 K. It is noted that ZT in Figure 7 increases linearly with temperature above 600 K, 

since, over the whole range, bipolar effects can be avoided. 

 

Figure 6. Plots of ZT against temperature for Mg2Si0.7Sn0.3. The plots 1, 2 and 3 refer to 

the three different assumptions regarding the variation of  with temperature. The fourth 

plot gives the data from Zaitsev et al. [37]. 
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Figure 7. Plot of ZT against temperature for Mg2Si0.7Sn0.3 on the basis of assumption 3. 

8. Application to Higher Manganese Silicide 

There do not seem to be many thermoelectric materials other than bismuth-antimony at low 

temperatures and bismuth telluride alloys, for which the energy gap is small enough to make minority 

carrier conduction a real problem, even at temperatures close to the melting point. However, one material 

that does seem to have a rather small gap is higher manganese silicide (HMS) [38]. The composition can 

range from MnSi1.70 to MnSi1.77. We shall look at complex-doped HMS which has an observed 

maximum ZT of 0.7 for a Seebeck coefficient of about 210 μV/K at 800 K. In fact, the decay of both ZT 

and α above this temperature suggests that a higher ZT might be achieved by suitable doping. 

Figure 8 shows the parameters α, σ, λ and ZT plotted against T for complex-doped HMS over the 

range 300 K to 1000 K. It is noted that the Seebeck coefficient reaches a maximum value of 210 μV/K at 

800 K. This allows us to estimate the energy gap to be 0.32 eV. We can use the observed values of ZT in 

what is clearly the one-carrier conduction range to calculate p for the majority carriers (holes) and its 

variation with temperature. 

We find that the variation of ZT and Seebeck coefficient in the temperature range 300 K to 700 K can 

be fitted by allowing p to vary as T1.75. Inspection of Figure 8 suggests that the lattice conductivity does 

not fall with rise of temperature for this material, and the observed variation of p is associated primarily 

with the mobility of the carriers. According to Figure 8, σ falls from 750 Ω−1·cm−1 to 560 Ω−1·cm−1 as 

the temperature changes from 300 K to 700 K. This implies a mobility variation as T−0.34. Such a 

mobility variation is very different from the T−1.5 dependence that is expected for acoustic-mode lattice 

scattering. It seems that in many materials the reliable prediction of ZT at high temperatures requires a 

determination of the temperature variation of n or p. 

We can use the observed T1.75 dependence of p together with the energy gap of 0.32 eV to predict the 

maximum value of ZT up to 1000 K. We have set the parameter c equal to 1 for lack of knowledge of the 

properties of n-type HMS. The results of this calculation are shown in Figure 9. 
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(a) (b) 

(c) (d) 

Figure 8. The thermoelectric properties of complex-doped HMS [38]. (a) Seebeck 

coefficient; (b) electrical conductivity; (c) thermal conductivity; and (d) ZT. 

 

Figure 9. ZT plotted against temperature for complex-doped HMS. The upper curve is the 

maximum value predicted from the variation of p with temperature together with the 

energy gap as estimated from the maximum Seebeck coefficient. The lower curve 

represents the observations of Fedorov and Zaitsev [38]. 

Below 800 K there is little difference between the predictions and the observed behaviour (the small 

difference is due to the fact that the Seebeck coefficient has been optimised for the upper curve).  

The substantial difference above 800 K is due to the influence of minority carriers in reducing ZT for the 
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experimental sample. It is noted that a continuous rise of ZT up to a temperature of 1000 K should be 

achievable if the effect of the minority carriers can be reduced by the addition of more acceptors. 

9. Conclusions 

Our objective has been the development of a simple method of predicting the ZT at high temperatures 

for a material in which the energy gap is small enough for bipolar effects to be significant. We have 

found, in fact, that the problem is not quite as simple as we had hoped. This is because the temperature 

dependence of the parameter  is not easily predicted. Thus, rather than using the data at one particular 

base temperature, we really need to know something about the temperature-dependence of σ0 and λL 

before we can make a reliable estimate of the high-temperature properties. It should be stressed that the 

changes of ZT with increasing temperature, as predicted in this paper, relate to optimised material rather 

than to samples with a given carrier concentration. 

We have previously applied the techniques that are described here successfully to bismuth telluride 

and its alloys [39]. The energy gap in these materials is small enough for minority carrier conduction to 

require consideration even at room temperature. 
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