Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = machinery traffic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3616 KiB  
Article
Alleviating Soil Compaction in an Asian Pear Orchard Using a Commercial Hand-Held Pneumatic Cultivator
by Hao-Ting Lin and Syuan-You Lin
Agronomy 2025, 15(7), 1743; https://doi.org/10.3390/agronomy15071743 - 19 Jul 2025
Viewed by 365
Abstract
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates [...] Read more.
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates subsurface hardpan formation and tree performance. This study evaluated the effectiveness of pneumatic subsoiling, a minimally invasive method using high-pressure air injection, in alleviating soil compaction without disturbing orchard surface integrity. Four treatments varying in radial distance from the trunk and pneumatic application were tested in a mature orchard in central Taiwan. Pneumatic subsoiling 120 cm away from the trunk significantly reduced soil penetration resistance by 15.4% at 34 days after treatment (2,302,888 Pa) compared to the control (2,724,423 Pa). However, this reduction was not sustained at later assessment dates, and no significant improvements in vegetative growth, fruit yield, and fruit quality were observed within the first season post-treatment. These results suggest that while pneumatic subsoiling can modify subsurface soil physical conditions with minimal surface disturbance, its agronomic benefits may require longer-term evaluation under varying moisture and management regimes. Overall, this study highlights pneumatic subsoiling may be a potential low-disturbance strategy to contribute to longer-term soil physical resilience. Full article
Show Figures

Figure 1

19 pages, 1751 KiB  
Article
Mid-Term Evaluation of Herbaceous Cover Restoration on Skid Trails Following Ground-Based Logging in Pure Oriental Beech (Fagus orientalis Lipsky) Stands of the Hyrcanian Forests, Northern Iran
by Ali Babaei-Ahmadabad, Meghdad Jourgholami, Angela Lo Monaco, Rachele Venanzi and Rodolfo Picchio
Land 2025, 14(7), 1387; https://doi.org/10.3390/land14071387 - 1 Jul 2025
Viewed by 260
Abstract
This study aimed to evaluate the effects of varying traffic intensities, the time since harvesting, and the interaction between these two factors on the restoration of herbaceous cover on skid trails in the Hyrcanian forests, Northern Iran. Three compartments were selected from two [...] Read more.
This study aimed to evaluate the effects of varying traffic intensities, the time since harvesting, and the interaction between these two factors on the restoration of herbaceous cover on skid trails in the Hyrcanian forests, Northern Iran. Three compartments were selected from two districts within the pure oriental beech (Fagus orientalis Lipsky) stands of Kheyrud Forest, where ground-based timber extraction had occurred 5, 10, and 15 years prior. In each compartment, three skid trails representing low, medium, and high traffic intensities were identified. Control plots were established 10 m away from the trails. A total of 54 systematically selected 1 m × 1 m sample plots were surveyed: 27 on skid trails (three traffic intensities × three time intervals × three replicates) and 27 control plots (matching the same variables). Within each quadrat, all herbaceous plants were counted, identified, and recorded. Our findings revealed that only traffic intensity had a clear significant impact on plant abundance. High traffic intensity led to a pronounced decline in herbaceous cover, with disturbed skid trails showing reduced species diversity or the complete disappearance of certain species in comparison to the control plots. Time since harvesting and its interaction with traffic intensity did not yield statistically significant effects. Disturbance led to a reduction in the quantities of certain species or even their disappearance on skid trails in comparison to the control plots. Given the pivotal role of machinery traffic intensity in determining mitigation strategies, there is a critical need for research on region-specific harvesting techniques and the development of adaptive management strategies that minimize ecological impacts by aligning practices with varying levels of traffic intensity. Full article
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
Post-Harvest Evaluation of Logging-Induced Compacted Soils and the Role of Caucasian Alder (Alnus subcordata C.A.Mey) Fine-Root Growth in Soil Recovery
by Zahra Rahmani Haftkhani, Mehrdad Nikooy, Ali Salehi, Farzam Tavankar and Petros A. Tsioras
Forests 2025, 16(7), 1044; https://doi.org/10.3390/f16071044 - 21 Jun 2025
Viewed by 283
Abstract
Accelerating the recovery of compacted soils caused by logging machinery using bioengineering techniques is a key goal of Sustainable Forest Management. This research was conducted on an abandoned skid trail with a uniform 15% slope and a history of heavy traffic, located in [...] Read more.
Accelerating the recovery of compacted soils caused by logging machinery using bioengineering techniques is a key goal of Sustainable Forest Management. This research was conducted on an abandoned skid trail with a uniform 15% slope and a history of heavy traffic, located in the Nav forest compartment of northern Iran. The main objectives were to assess (a) soil physical properties 35 years after skidding by a tracked bulldozer, (b) the impact of natural alder regeneration on soil recovery, and (c) the contribution of alder fine-root development to the restoration of compacted soils in beech stands. Soil physical properties and fine root biomass were analyzed across three depth classes (0–10 cm, 10–20 cm, 20–30 cm) and five locations (left wheel track (LT), between wheel tracks (BT), right wheel track (RT)) all with alder trees, and additionally control points inside the trail without alder trees (CPWA), as well as outside control points with alder trees (CPA). Sampling points near alder trees (RT, LT, BT) were compared to CPWA and CPA. CPA had the lowest soil bulk density, followed by LT, BT, RT, and CPWA. Bulk density was highest (1.35 ± 0.07 g cm−3) at the 0–10 cm depth and lowest (1.08 ± 0.4 g cm−3) at 20–30 cm. The fine root biomass at 0–10 cm depth (0.23 ± 0.21 g dm−3) was significantly higher than at deeper levels. Skid trail sampling points showed higher fine root biomass than CPWA but lower than CPA, by several orders of magnitude. Alder tree growth significantly reduced soil bulk density, aiding soil recovery in the study area. However, achieving optimal conditions will require additional time. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 6587 KiB  
Article
EEMD Energy Spectrum Decoupling: An Efficient Hilbert–Huang Fusion Approach for Intelligent Bearing Fault Diagnosis
by Lianyou Lai, Weijian Xu and Zhongzhe Song
Appl. Sci. 2025, 15(12), 6458; https://doi.org/10.3390/app15126458 - 8 Jun 2025
Viewed by 440
Abstract
As a critical component of rotating machinery, the operational status of rolling bearings is considered to directly determine the reliability of rail traffic systems. To address the complex modulation effects existing between multiple bearing components and the non-linear, non-stationary characteristics exhibited by vibration [...] Read more.
As a critical component of rotating machinery, the operational status of rolling bearings is considered to directly determine the reliability of rail traffic systems. To address the complex modulation effects existing between multiple bearing components and the non-linear, non-stationary characteristics exhibited by vibration acceleration signals, an intelligent fault diagnosis method for bearings based on Hilbert envelope demodulation and Ensemble Empirical Mode Decomposition energy distribution features is proposed. First, the original vibration signal is subjected to envelope demodulation processing by the Hilbert transform, thereby effectively separating the envelope signal containing fault characteristics. Subsequently, the demodulated envelope signal is decomposed by EEMD to extract Intrinsic Mode Functions (IMFs), where each IMF component is calculated layer by layer using a normalization method based on the EEMD decomposition sequence. Finally, the proposed algorithm is validated by the standard bearing fault dataset from Case Western Reserve University. Experimental results show that the proposed method achieves 100% accuracy in fault identification, and its superiority is proven to exceed conventional diagnostic approaches significantly. Full article
Show Figures

Figure 1

40 pages, 7102 KiB  
Review
Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges
by Filipe Adão, Luís Pádua and Joaquim J. Sousa
Agriculture 2025, 15(8), 852; https://doi.org/10.3390/agriculture15080852 - 15 Apr 2025
Cited by 2 | Viewed by 1691
Abstract
Soil degradation is a critical challenge to global agricultural sustainability, driven by intensive land use, unsustainable farming practices, and climate change. Conventional soil monitoring techniques often rely on invasive sampling methods, which can be labor-intensive, disruptive, and limited in spatial coverage. In contrast, [...] Read more.
Soil degradation is a critical challenge to global agricultural sustainability, driven by intensive land use, unsustainable farming practices, and climate change. Conventional soil monitoring techniques often rely on invasive sampling methods, which can be labor-intensive, disruptive, and limited in spatial coverage. In contrast, non-invasive geophysical techniques, particularly ground-penetrating radar, have gained attention as tools for assessing soil properties. However, an assessment of ground-penetrating radar’s applications in agricultural soil research—particularly for detecting soil structural changes related to degradation—remains undetermined. To address this issue, a systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. A search was conducted across Scopus and Web of Science databases, as well as relevant review articles and study reference lists, up to 31 December 2024. This process resulted in 86 potentially relevant studies, of which 24 met the eligibility criteria and were included in the final review. The analysis revealed that the ground-penetrating radar allows the detection of structural changes associated with tillage practices and heavy machinery traffic in agricultural lands, namely topsoil disintegration and soil compaction, both of which are important indicators of soil degradation. These variations are reflected in changes in electrical permittivity and reflectivity, particularly above the tillage horizon. These shifts are associated with lower soil water content, increased soil homogeneity, and heightened wave reflectivity at the upper boundary of compacted soil. The latter is linked to density contrasts and waterlogging above this layer. Additionally, ground-penetrating radar has demonstrated its potential in mapping alterations in electrical permittivity related to preferential water flow pathways, detecting shifts in soil organic carbon distribution, identifying disruptions in root systems due to tillage, and assessing soil conditions potentially affected by excessive fertilization in iron oxide-rich soils. Future research should focus on refining methodologies to improve the ground-penetrating radar’s ability to quantify soil degradation processes with greater accuracy. In particular, there is a need for standardized experimental protocols to evaluate the effects of monocultures on soil fertility, assess the impact of excessive fertilization effects on soil acidity, and integrate ground-penetrating radar with complementary geophysical and remote sensing techniques for a holistic approach to soil health monitoring. Full article
Show Figures

Figure 1

24 pages, 6703 KiB  
Article
Different Proteostasis Mechanisms Facilitate the Assembly of Individual Components on the Chitin Synthase 3 Complex at the Endoplasmic Reticulum
by Noelia Sánchez, Rosario Valle and César Roncero
J. Fungi 2025, 11(3), 221; https://doi.org/10.3390/jof11030221 - 14 Mar 2025
Viewed by 633
Abstract
Chitin synthase 3 complex assembly begins at the endoplasmic reticulum where the formation of a Chs3/Chs7 complex facilitates its exit from the ER and its transport along the secretory route. In the present study, our work shows that orphan molecules of Chs7 can [...] Read more.
Chitin synthase 3 complex assembly begins at the endoplasmic reticulum where the formation of a Chs3/Chs7 complex facilitates its exit from the ER and its transport along the secretory route. In the present study, our work shows that orphan molecules of Chs7 can exit the ER and are later recycled from the early Golgi by coat protein I (COPI) machinery via the adaptor complex Erv41/Erv46. Moreover, an eventual excess of the protein in the Golgi is recognized by the GGA complex and targeted to the vacuole for degradation through the ESCRT machinery. Non-oligomerizable versions of Chs3 can also exit the ER individually and follow a similar route to that of Chs7. We therefore demonstrate the traffic of unassembled CS3 subunits and describe the cellular mechanisms that guarantee the correct assembly of this protein complex at the ER while providing a default traffic route to the vacuole in case of its failure. This traffic route is shared with canonical ER adaptors, such as Erv29 and Erv14, and other components of protein complexes. The comparative analysis of their traffic allows us to discern a cellular program that combines COPI recycling, proteasomal degradation, and vacuolar disposal for maintaining protein homeostasis at the ER. Full article
Show Figures

Figure 1

14 pages, 2599 KiB  
Article
Rotary Paraplow: A New Tool for Soil Tillage for Sugarcane
by Cezario B. Galvão, Angel P. Garcia, Ingrid N. de Oliveira, Elizeu S. de Lima, Lenon H. Lovera, Artur V. A. Santos, Zigomar M. de Souza and Daniel Albiero
AgriEngineering 2025, 7(3), 61; https://doi.org/10.3390/agriengineering7030061 - 28 Feb 2025
Viewed by 820
Abstract
The sugarcane cultivation has used heavy machinery on a large scale, which causes soil compaction. The minimum tillage has been used to reduce the traffic of machines on the crop, but there is a lack of appropriate tools for the implementation of this [...] Read more.
The sugarcane cultivation has used heavy machinery on a large scale, which causes soil compaction. The minimum tillage has been used to reduce the traffic of machines on the crop, but there is a lack of appropriate tools for the implementation of this technique, especially in sugarcane areas. The University of Campinas—UNICAMP developed a conservation soil tillage tool called “Rotary paraplow”, the idea was to join the concepts of a vertical milling cutter with the paraplow, which is a tool for subsoiling without inversion of soil. The rotary paraplow is a conservationist tillage because it mobilizes only the planting line with little disturbance of the soil surface and does the tillage with the straw in the area. These conditions make this study pioneering in nature, by proposing an equipment developed to address these issues as an innovation in the agricultural machinery market. We sought to evaluate soil tillage using rotary paraplow and compare it with conventional tillage, regarding soil physical properties and yield. The experiment was conducted in an Oxisol in the city of Jaguariuna, Brazil. The comparison was made between the soil physical properties: soil bulk density, porosity, macroporosity, microporosity and penetration resistance. At the end, a biometric evaluation of the crop was carried out in both areas. The soil properties showed few statistically significant variations, and the production showed no statistical difference. The rotary paraplow proved to be an applicable tool in the cultivation of sugarcane and has the advantage of being an invention adapted to Brazilian soils, bringing a new form of minimal tillage to areas of sugarcane with less tilling on the soil surface, in addition to reducing machine traffic. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

25 pages, 2385 KiB  
Article
Toward the Construction of a Sustainable Society: Assessing the Temporal Variations and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China
by Kerong Zhang, Liangyu Jiang and Wuyi Liu
Sustainability 2024, 16(22), 9923; https://doi.org/10.3390/su16229923 - 14 Nov 2024
Viewed by 958
Abstract
This study comprehensively assessed carbon dioxide emissions over a span of two decades, from 2000 to 2020, with the decomposition and decoupling analyses considering multiple influence factors across both short-term and long-term dimensions. The results revealed great fluctuations in the decoupling analysis index [...] Read more.
This study comprehensively assessed carbon dioxide emissions over a span of two decades, from 2000 to 2020, with the decomposition and decoupling analyses considering multiple influence factors across both short-term and long-term dimensions. The results revealed great fluctuations in the decoupling analysis index (DAI) for subjected sectors such as natural resource processing, electricity, gas, water, textiles, machinery, and electronics manufacturing. Of note, significantly changed sectoral DAIs were observed in urban traffic and transportation, logistics warehousing, and the postal industry within Anhui Province. In contrast, the DAIs of other sectors and social services exhibited a weak decoupling state in Anhui Province. The industrial sectors responsible for mining and textiles and the energy structure encompassing electricity, gas, and water emerged as the primary contributors to carbon dioxide emissions. Additionally, the efficiency of the socio-economic development (EDE) was identified as the principal driver of carbon dioxide emissions during the observed period, while the energy consumption intensity (ECI) served as the putative crucial inhibiting factor. The two-dimensional decoupling of carbon dioxide emissions attributable to the EDE demonstrated a gradual transition from industrial sectors to buildings and tertiary industries from 2000 to 2020. In the future, the interaction between urban carbon dioxide emissions and the socio-economic landscape should be optimized to foster integrated social sustainable development in Anhui Province. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

14 pages, 3611 KiB  
Article
The Conserved YPX3L Motif in the BK Polyomavirus VP1 Protein Is Important for Viral Particle Assembly but Not for Its Secretion into Extracellular Vesicles
by Marine Bentz, Louison Collet, Virginie Morel, Véronique Descamps, Emmanuelle Blanchard, Caroline Lambert, Baptiste Demey, Etienne Brochot and Francois Helle
Viruses 2024, 16(7), 1124; https://doi.org/10.3390/v16071124 - 13 Jul 2024
Viewed by 1515
Abstract
The BK polyomavirus (BKPyV) is a small DNA non-enveloped virus whose infection is asymptomatic in most of the world’s adult population. However, in cases of immunosuppression, the reactivation of the virus can cause various complications, and in particular, nephropathies in kidney transplant recipients [...] Read more.
The BK polyomavirus (BKPyV) is a small DNA non-enveloped virus whose infection is asymptomatic in most of the world’s adult population. However, in cases of immunosuppression, the reactivation of the virus can cause various complications, and in particular, nephropathies in kidney transplant recipients or hemorrhagic cystitis in bone marrow transplant recipients. Recently, it was demonstrated that BKPyV virions can use extracellular vesicles to collectively traffic in and out of cells, thus exiting producing cells without cell lysis and entering target cells by diversified entry routes. By a comparison to other naked viruses, we investigated the possibility that BKPyV virions recruit the Endosomal-Sorting Complexes Required for Transport (ESCRT) machinery through late domains in order to hijack extracellular vesicles. We identified a single potential late domain in the BKPyV structural proteins, a YPX3L motif in the VP1 protein, and used pseudovirions to study the effect of point mutations found in a BKPyV clinical isolate or known to ablate the interaction of such a domain with the ESCRT machinery. Our results suggest that this domain is not involved in BKPyV association with extracellular vesicles but is crucial for capsomere interaction and thus viral particle assembly. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

28 pages, 776 KiB  
Review
Structural Vibration Comfort: A Review of Recent Developments
by Weiping Xie and Yumeng Hua
Buildings 2024, 14(6), 1592; https://doi.org/10.3390/buildings14061592 - 31 May 2024
Cited by 5 | Viewed by 3680
Abstract
With continuous improvements in the social economy and living standards of individuals, the vibration comfort of building structures has gradually been emphasized by academic and engineering communities, such as vehicle-induced vibrations in buildings near traffic, human-induced vibrations in large-span structures, wind-induced vibrations in [...] Read more.
With continuous improvements in the social economy and living standards of individuals, the vibration comfort of building structures has gradually been emphasized by academic and engineering communities, such as vehicle-induced vibrations in buildings near traffic, human-induced vibrations in large-span structures, wind-induced vibrations in super-high-rise buildings, and machinery-induced structural vibrations. Comfort-based structural analysis is distinct from traditional safety-based structural analysis, and its theoretical systems and unified guidelines have not yet been established. This paper reviews recent research on structural vibration comfort, including major load categories and their impacts, comfort-based structural analysis, evaluation methods, and vibration-mitigation measures. By presenting the shortcomings of the existing research, potential topics for future study are suggested. Full article
(This article belongs to the Special Issue Advances and Applications in Structural Vibration Control)
Show Figures

Figure 1

19 pages, 6725 KiB  
Article
Measurements and Evaluation of Road Traffic-Induced Micro-Vibration in a Workshop Equipped with Precision Instruments
by Zhijun Zhang, Xiaozhen Li, Xun Zhang, Guihong Xu and Anjie Wu
Buildings 2024, 14(4), 1142; https://doi.org/10.3390/buildings14041142 - 18 Apr 2024
Cited by 4 | Viewed by 1950
Abstract
Road traffic transportation has flourished in the process of urbanization due to its advantages, but concurrently it generates harmful environmental vibrations. This vibration issue becomes particularly crucial in production workshops housing precision instruments. However, limited research has been undertaken on this matter. This [...] Read more.
Road traffic transportation has flourished in the process of urbanization due to its advantages, but concurrently it generates harmful environmental vibrations. This vibration issue becomes particularly crucial in production workshops housing precision instruments. However, limited research has been undertaken on this matter. This study aimed to investigate the influence of road traffic-induced vibration on micro-vibrations within a workshop housing precision instruments. A field test was conducted to assess the vibration levels originating from both machinery operation and vehicular traffic. The results indicated that ground-borne vibrations caused by road vehicles decrease with increasing propagation distance, peaking around 10 Hz. Machinery operation vibrations were primarily concentrated above 20 Hz, while vehicular traffic vibrations were more prominent below 20 Hz. Notably, the passage of heavy trucks significantly impacted both ground and workshop vibrations, with vertical vibrations being particularly significant. Within the workshop, the second floor experienced higher vibrations above 20 Hz due to the presence of installed instruments. Importantly, the micro-vibration levels on both floors exceeded the VC-C limit (12.5 µm/s), highlighting the need to account for road traffic and machinery vibrations in workshop design. These data can be utilized to validate numerical models for predicting road traffic-induced vibrations, aiding in vibration assessment during road planning and design. Full article
(This article belongs to the Special Issue Building Vibration and Soil Dynamics)
Show Figures

Figure 1

24 pages, 41039 KiB  
Article
Evolution of Crop Planting Structure in Traditional Agricultural Areas and Its Influence Factors: A Case Study in Alar Reclamation
by Shuqi Jiang, Jiankui Yu, Shenglin Li, Junming Liu, Guang Yang, Guangshuai Wang, Jinglei Wang and Ni Song
Agronomy 2024, 14(3), 580; https://doi.org/10.3390/agronomy14030580 - 14 Mar 2024
Cited by 2 | Viewed by 1638
Abstract
This research provides a comprehensive analysis of the spatiotemporal evolution of the regional cropping structure and its influencing factors. Using Landsat satellite images, field surveys, and yearbook data, we developed a planting structure extraction model employing the classification regression tree algorithm to obtain [...] Read more.
This research provides a comprehensive analysis of the spatiotemporal evolution of the regional cropping structure and its influencing factors. Using Landsat satellite images, field surveys, and yearbook data, we developed a planting structure extraction model employing the classification regression tree algorithm to obtain data on the major crop cultivation and structural characteristics of Alar reclamation from 1990 to 2023. A dynamic model and transfer matrix were used to analyze temporal changes, and a centroid migration model was used to study spatial changes in the cropping structure. Nonparametric mutation tests and through-traffic coefficient analysis were utilized to quantify the main driving factors influencing the cropping structure. During the period of 1990–2023, the cotton area in the Alar reclamation region expanded by 722.08 km2, while the jujube exhibited an initial increase followed by a decrease in the same period. The primary reasons are linked to the cost of purchase, agricultural mechanization, and crop compatibility. In the Alar reclamation area, cotton, chili, and jujube are the primary cultivated crops. Cotton is mainly grown on the southern side of the Tarim River, while chili cultivation is concentrated on the northern bank of the river. Over the years, there has been a noticeable spatial complementarity in the distribution and density of rice and cotton crops in this region. In the Alar reclamation, the main factors influencing the change in cultivated land area are cotton price, agricultural machinery gross power, and population. Consequently, implementing measures such as providing planting subsidies and other policy incentives to enhance planting income can effectively stimulate farmers’ willingness to engage in planting activities. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 1733 KiB  
Article
Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation
by Rafael Maldonado-Bravo, Tomás Villaseñor, Martha Pedraza-Escalona, Leonor Pérez-Martínez, Rogelio Hernández-Pando and Gustavo Pedraza-Alva
Int. J. Mol. Sci. 2024, 25(6), 3145; https://doi.org/10.3390/ijms25063145 - 9 Mar 2024
Viewed by 2202
Abstract
Mycobacterium tuberculosis (Mtb) employs various strategies to manipulate the host’s cellular machinery, overriding critical molecular mechanisms such as phagosome-lysosome fusion, which are crucial for its destruction. The Protein Kinase C (PKC) signaling pathways play a key role in regulating phagocytosis. Recent [...] Read more.
Mycobacterium tuberculosis (Mtb) employs various strategies to manipulate the host’s cellular machinery, overriding critical molecular mechanisms such as phagosome-lysosome fusion, which are crucial for its destruction. The Protein Kinase C (PKC) signaling pathways play a key role in regulating phagocytosis. Recent research in Interferon-activated macrophages has unveiled that PKC phosphorylates Coronin-1, leading to a shift from phagocytosis to micropinocytosis, ultimately resulting in Mtb destruction. Therefore, this study aims to identify additional PKC targets that may facilitate Mycobacterium bovis (M. bovis) infection in macrophages. Protein extracts were obtained from THP-1 cells, both unstimulated and mycobacterial-stimulated, in the presence or absence of a general PKC inhibitor. We conducted an enrichment of phosphorylated peptides, followed by their identification through mass spectrometry (LC-MS/MS). Our analysis revealed 736 phosphorylated proteins, among which 153 exhibited alterations in their phosphorylation profiles in response to infection in a PKC-dependent manner. Among these 153 proteins, 55 are involved in various cellular processes, including endocytosis, vesicular traffic, autophagy, and programmed cell death. Importantly, our findings suggest that PKC may negatively regulate autophagy by phosphorylating proteins within the mTORC1 pathway (mTOR2/PKC/Raf-1/Tsc2/Raptor/Sequestosome-1) in response to M. bovis BCG infection, thereby promoting macrophage infection. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Mycobacterial Infection 3.0)
Show Figures

Figure 1

16 pages, 3472 KiB  
Article
Soil Compaction and Productivity Evolution in a Harvested and Grazed Mediterranean Scots Pine (Pinus sylvestris L.) Forest
by María José Aroca-Fernández, José Alfredo Bravo-Fernández, Juan Ignacio García-Viñas and Rafael Serrada
Forests 2024, 15(3), 451; https://doi.org/10.3390/f15030451 - 28 Feb 2024
Cited by 4 | Viewed by 1402
Abstract
The effects of machinery and livestock on forest soil compaction have mostly been studied at short-term and local scales. A better understanding of the long-term effects of compaction in mature stands at the management scale is needed, especially in hot and dry climates. [...] Read more.
The effects of machinery and livestock on forest soil compaction have mostly been studied at short-term and local scales. A better understanding of the long-term effects of compaction in mature stands at the management scale is needed, especially in hot and dry climates. This study aims to analyze (1) soil compaction in a Mediterranean Scots pine (Pinus sylvestris L.) forest subjected to mechanized logging and grazing for more than 50 years and (2) forest productivity trends during these 50 years of disturbance. Soil penetration resistance (0–10 cm and 10–20 cm) and soil moisture (0–12 cm) were measured in 181 randomly selected points affected by “high machinery traffic”, “high cattle traffic” or “low traffic”. Decennial forest inventory data on density, timber volume, and recruitment were collected and analyzed over the five decades preceding soil measurements. Soil penetration resistance exceeded 2500 kPa at a significant portion of the sampled points, although the highest levels of compaction tended to be concentrated in the subsurface layer of the high-traffic areas. Cattle and machinery caused significant compaction in these areas and increased penetration resistance in the range of 350–450 kPa. However, despite the long period of disturbance and the increase in penetration resistance observed, no signs of productivity decline were detected in the forest. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 4689 KiB  
Article
An Evaluation of the Economic Viability and Accessibility of CRCP and JPCP: A Comparative Analysis
by Milad Moharekpour, Manouchehr Shokri, Eva Wellerdick, Marzia Traverso, Markus Oeser and Pengfei Liu
Sustainability 2024, 16(3), 1108; https://doi.org/10.3390/su16031108 - 28 Jan 2024
Cited by 4 | Viewed by 2174
Abstract
Road infrastructure serves as a foundational driver of a nation’s economic and cultural growth. Incorporating life cycle cost analysis (LCCA), as well as considerations of availability and environmental impact, enables policymakers to make strategic decisions that not only enhance fiscal efficiency but also [...] Read more.
Road infrastructure serves as a foundational driver of a nation’s economic and cultural growth. Incorporating life cycle cost analysis (LCCA), as well as considerations of availability and environmental impact, enables policymakers to make strategic decisions that not only enhance fiscal efficiency but also support sustainable progress. This paper centers on an in-depth examination of two prevalent pavement technologies: continuously reinforced concrete pavements (CRCP) and jointed plain concrete pavements (JPCP). It specifically delineates the application of these methods to a hypothetical one-kilometer motorway construction in Germany. Employing LCCA for concrete pavements, the paper evaluates long-term fiscal prudence among alternative investment opportunities, factoring in resource utilization—both materials and machinery—and long-term care and upkeep obligations over the pavements’ operational lifespans. The analysis extends to appraise agency expenditures associated with the pair of pavement strategies and estimates the concomitant delay durations and costs relevant to the exemplar project. Central to this research is the investigation of road availability and its quantifiable influence on traffic efficacy, parsing through metrics such as the tally of days roads are out of service and the subsequent repercussions on vehicular flow. The investigation also proposes strategies for the reduction of embodied carbon in CRCP and JPCP systems. While accounting for variances in functional performance and vehicular comfort levels, this study contributes scientifically by tackling pragmatic engineering dilemmas involved in pavement selection, with a spotlight on minimizing costs, curtailing traffic interruptions, and mitigating ecological impacts for the duration of the pavement’s life cycle. Full article
(This article belongs to the Special Issue Sustainable Pavement Materials)
Show Figures

Figure 1

Back to TopTop