Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = mNeonGreen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1960 KB  
Article
Engineered Fluorescent Variants of Lactadherin C2 Domain for Phosphatidylserine Detection in Flow Cytometry
by Ekaterina Koltsova, Albina Avilova, Elena Nikolaeva, Nikita Kolchin and Kirill Butov
Biomolecules 2025, 15(5), 673; https://doi.org/10.3390/biom15050673 - 6 May 2025
Cited by 2 | Viewed by 1307
Abstract
Phosphatidylserine (PS) is an essential phospholipid and an emerging biomarker involved in key biological processes. While annexin V (axV) is the most widely used tool for PS detection, its calcium-dependent binding and other limitations have spurred interest in alternative probes. The lactadherin C2 [...] Read more.
Phosphatidylserine (PS) is an essential phospholipid and an emerging biomarker involved in key biological processes. While annexin V (axV) is the most widely used tool for PS detection, its calcium-dependent binding and other limitations have spurred interest in alternative probes. The lactadherin C2 domain (lactC2) offers a promising alternative, addressing many of the drawbacks associated with axV. However, its broader adoption has been hindered by challenges in production and modification for convenient experimental use. Here, we demonstrate the successful in-house engineering of fully functional recombinant bovine lactC2-based fluorescent sensors and compare their key parameters to axV probes. We show that mNeonGreen–lactC2 fusion exhibits calcium-independent binding with a comparable dissociation constant for 20% PS liposomes. We also demonstrate the detrimental effects of primary amine modification on lactC2’s PS binding efficiency, suggesting the preferential use of fluorescent protein fusion or alternative approaches. Finally, we show that unlike full-length lactadherin or axV, lactC2 inhibited thrombin generation only at high concentrations (>250 nM) in coagulation assays. These findings establish recombinant lactC2 as a versatile and promising PS sensor, with potential applications in experimental settings where axV might be unsuitable Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

16 pages, 2185 KB  
Article
Virulence Is More than Adhesion and Invasion Ability, an In Vitro Cell Infection Assay of Bovine Mycoplasma spp.
by Elhem Yacoub, Daniel Kos and Murray Jelinski
Microorganisms 2025, 13(3), 632; https://doi.org/10.3390/microorganisms13030632 - 11 Mar 2025
Cited by 1 | Viewed by 968
Abstract
Mycoplasma bovis is the most common mycoplasma associated with cattle diseases worldwide. However, other seemingly less virulent Mycoplasma spp. such as M. bovigenitalium and M. bovirhinis have also been associated with mycoplasmosis. The study objective was to compare the adhesion and cellular invasion [...] Read more.
Mycoplasma bovis is the most common mycoplasma associated with cattle diseases worldwide. However, other seemingly less virulent Mycoplasma spp. such as M. bovigenitalium and M. bovirhinis have also been associated with mycoplasmosis. The study objective was to compare the adhesion and cellular invasion characteristics of these bovine Mycoplasma spp. using Madin–Darby Bovine Kidney (MDBK) epithelial cells. MDBK cells were separately infected with 12 M. bovis strains and one strain each of M. bovigenitalium and M. bovirhinis. Following infection, a gentamicin protection assay was performed and the cells lysed at 6 and 54 h post-infection. The MDBK cell lysates were cultured for Mycoplasma spp. and qPCR was used to estimate the average number of Mycoplasma bacterial cells that infected each MDBK cell (Myc/Cell ratio). Confocal and electron microscopy studies using M. bovis mNeonGreen strain were also performed. All 14 Mycoplasma strains multiplied within the MDBK cells, a finding confirmed by microscopy studies of the M. bovis mNeonGreen strain. Unexpectedly, the M. bovis strains, obtained from diseased and asymptomatic cattle and bison, had lower Myc/Cell ratios than M. bovirhinis and M. bovigenitalium strains. These findings suggest that the ability for mycoplasmas to invade and replicate within host cells does not account for the differences in virulence between species. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 2163 KB  
Article
Electroporation Induces Unexpected Alterations in Gene Expression: A Tip for Selection of Optimal Transfection Method
by Taiji Hamada, Seiya Yokoyama, Toshiaki Akahane, Kei Matsuo, Ikumi Kitazono, Tatsuhiko Furukawa and Akihide Tanimoto
Curr. Issues Mol. Biol. 2025, 47(2), 91; https://doi.org/10.3390/cimb47020091 - 31 Jan 2025
Cited by 1 | Viewed by 1658
Abstract
Electroporation is an efficient method for nucleotide and protein transfer, and is used for clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-mediated genome editing. In this study, we investigated the effects of electroporation on platelet-derived growth factor receptor alpha (PDGFRA [...] Read more.
Electroporation is an efficient method for nucleotide and protein transfer, and is used for clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-mediated genome editing. In this study, we investigated the effects of electroporation on platelet-derived growth factor receptor alpha (PDGFRA) and receptor tyrosine kinase (RTK) expression in U-251 and U-87 MG cells. PDGFRA mRNA and protein expression decreased 2 days after electroporation in both cell lines, with recovery observed after 13 days in U-87 MG cells. However, in U-251 MG cells, PDGFRα expression remained suppressed, despite mRNA recovery after 13 days. Similar expression profiles were observed for lipofection in the U-251 MG cells. Comprehensive RNA sequencing confirmed electroporation-induced up- and down-regulation of RTK mRNA in U-251 MG cells 2 days post-electroporation. In contrast, recombinant adeno-associated virus (rAAV) transfected with mNeonGreen fluorescent protein or Cas9 did not affect PDGFRA, RTKs, or inflammatory cytokine expression, suggesting fewer adverse effects of rAAV on U-251 MG cells. These findings emphasize the need for adequate recovery periods following electroporation or the adoption of alternative methods, such as rAAV transfection, to ensure the accurate assessment of CRISPR-mediated gene editing outcomes. Full article
Show Figures

Figure 1

20 pages, 6452 KB  
Article
Dynamic Mitotic Localization of the Centrosomal Kinases CDK1, Plk, AurK, and Nek2 in Dictyostelium amoebae
by Stefan Krüger, Nathalie Pfaff, Ralph Gräf and Irene Meyer
Cells 2024, 13(18), 1513; https://doi.org/10.3390/cells13181513 - 10 Sep 2024
Cited by 1 | Viewed by 1500
Abstract
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. [...] Read more.
The centrosome of the amoebozoan model Dictyostelium discoideum provides the best-established model for an acentriolar centrosome outside the Opisthokonta. Dictyostelium exhibits an unusual centrosome cycle, in which duplication is initiated only at the G2/M transition and occurs entirely during the M phase. Little is known about the role of conserved centrosomal kinases in this process. Therefore, we have generated knock-in strains for Aurora (AurK), CDK1, cyclin B, Nek2, and Plk, replacing the endogenous genes with constructs expressing the respective green fluorescent Neon fusion proteins, driven by the endogenous promoters, and studied their behavior in living cells. Our results show that CDK1 and cyclin B arrive at the centrosome first, already during G2, followed by Plk, Nek2, and AurK. Furthermore, CDK1/cyclin B and AurK were dynamically localized at kinetochores, and AurK in addition at nucleoli. The putative roles of all four kinases in centrosome duplication, mitosis, cytokinesis, and nucleolar dynamics are discussed. Full article
Show Figures

Figure 1

16 pages, 5063 KB  
Article
Quantitative Analysis of Rhodobacter sphaeroides Storage Organelles via Cryo-Electron Tomography and Light Microscopy
by Daniel Parrell, Joseph Olson, Rachelle A. Lemke, Timothy J. Donohue and Elizabeth R. Wright
Biomolecules 2024, 14(8), 1006; https://doi.org/10.3390/biom14081006 - 14 Aug 2024
Viewed by 2355
Abstract
Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to [...] Read more.
Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds. Full article
(This article belongs to the Special Issue New Insights into the Membranes of Anoxygenic Phototrophic Bacteria)
Show Figures

Graphical abstract

19 pages, 10196 KB  
Article
A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans
by Louis S. Phillips-Rose, Chendi K. Yu, Nicholas P. West and James A. Fraser
J. Fungi 2024, 10(8), 567; https://doi.org/10.3390/jof10080567 - 12 Aug 2024
Viewed by 2188
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable [...] Read more.
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans. Full article
(This article belongs to the Special Issue Molecular Processes of Fungi, 2nd Edition)
Show Figures

Figure 1

14 pages, 2370 KB  
Article
A Reliable System for Quantitative G-Protein Activation Imaging in Cancer Cells
by Elena Mandrou, Peter A. Thomason, Peggy I. Paschke, Nikki R. Paul, Luke Tweedy and Robert H. Insall
Cells 2024, 13(13), 1114; https://doi.org/10.3390/cells13131114 - 27 Jun 2024
Cited by 2 | Viewed by 1623
Abstract
Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime [...] Read more.
Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

12 pages, 2115 KB  
Article
Natural-Target-Mimicking Translocation-Based Fluorescent Sensor for Detection of SARS-CoV-2 PLpro Protease Activity and Virus Infection in Living Cells
by Elena L. Sokolinskaya, Olga N. Ivanova, Irina T. Fedyakina, Alexander V. Ivanov and Konstantin A. Lukyanov
Int. J. Mol. Sci. 2024, 25(12), 6635; https://doi.org/10.3390/ijms25126635 - 17 Jun 2024
Cited by 1 | Viewed by 1906
Abstract
Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1–4) as well as for the suppression of cellular [...] Read more.
Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1–4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins—red mScarlet I and green mNeonGreen—separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
Show Figures

Figure 1

27 pages, 2619 KB  
Article
FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors
by Philip Kohlmann, Sergey N. Krylov, Pascal Marchand and Joachim Jose
Pharmaceuticals 2024, 17(4), 516; https://doi.org/10.3390/ph17040516 - 17 Apr 2024
Cited by 1 | Viewed by 2352
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to [...] Read more.
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs—HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)—to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90–Sba1 and HSP90α–p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70–120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100–130 nM. For HSP90α-p23, PCI was 180–260 (220 ± 40) nM and ACI was 200–270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5. Full article
Show Figures

Figure 1

16 pages, 26942 KB  
Article
Generation and Characterization of an Influenza D Reporter Virus
by Lukas Probst, Laura Laloli, Manon Flore Licheri, Matthias Licheri, Mitra Gultom, Melle Holwerda, Philip V’kovski and Ronald Dijkman
Viruses 2023, 15(12), 2444; https://doi.org/10.3390/v15122444 - 16 Dec 2023
Cited by 1 | Viewed by 2862
Abstract
Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that [...] Read more.
Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV. Full article
(This article belongs to the Special Issue Non-A Influenza 3.0)
Show Figures

Figure 1

13 pages, 2302 KB  
Article
21 Fluorescent Protein-Based DNA Staining Dyes
by Yurie Tehee Kim, Hyesoo Oh, Myung Jun Seo, Dong Hyeun Lee, Jieun Shin, Serang Bong, Sujeong Heo, Natalia Diyah Hapsari and Kyubong Jo
Molecules 2022, 27(16), 5248; https://doi.org/10.3390/molecules27165248 - 17 Aug 2022
Cited by 8 | Viewed by 4322
Abstract
Fluorescent protein–DNA-binding peptides or proteins (FP-DBP) are a powerful means to stain and visualize large DNA molecules on a fluorescence microscope. Here, we constructed 21 kinds of FP-DBPs using various colors of fluorescent proteins and two DNA-binding motifs. From the database of fluorescent [...] Read more.
Fluorescent protein–DNA-binding peptides or proteins (FP-DBP) are a powerful means to stain and visualize large DNA molecules on a fluorescence microscope. Here, we constructed 21 kinds of FP-DBPs using various colors of fluorescent proteins and two DNA-binding motifs. From the database of fluorescent proteins (FPbase.org), we chose bright FPs, such as RRvT, tdTomato, mNeonGreen, mClover3, YPet, and mScarlet, which are four to eight times brighter than original wild-type GFP. Additionally, we chose other FPs, such as mOrange2, Emerald, mTurquoise2, mStrawberry, and mCherry, for variations in emitting wavelengths. For DNA-binding motifs, we used HMG (high mobility group) as an 11-mer peptide or a 36 kDa tTALE (truncated transcription activator-like effector). Using 21 FP-DBPs, we attempted to stain DNA molecules and then analyzed fluorescence intensities. Most FP-DBPs successfully visualized DNA molecules. Even with the same DNA-binding motif, the order of FP and DBP affected DNA staining in terms of brightness and DNA stretching. The DNA staining pattern by FP-DBPs was also affected by the FP types. The data from 21 FP-DBPs provided a guideline to develop novel DNA-binding fluorescent proteins. Full article
Show Figures

Figure 1

10 pages, 1686 KB  
Article
Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro
by Elena L. Sokolinskaya, Lidia V. Putlyaeva, Vasilisa S. Polinovskaya and Konstantin A. Lukyanov
Int. J. Mol. Sci. 2022, 23(14), 7826; https://doi.org/10.3390/ijms23147826 - 15 Jul 2022
Cited by 8 | Viewed by 2974
Abstract
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for [...] Read more.
In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target—green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker—were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Figure 1

19 pages, 2421 KB  
Article
Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor
by Katarzyna Marek, Federico Armando, Vanessa Maria Nippold, Karl Rohn, Philippe Plattet, Graham Brogden, Gisa Gerold, Wolfgang Baumgärtner and Christina Puff
Int. J. Mol. Sci. 2022, 23(11), 6156; https://doi.org/10.3390/ijms23116156 - 31 May 2022
Cited by 5 | Viewed by 2705
Abstract
Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with [...] Read more.
Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies. Full article
(This article belongs to the Special Issue Attacking Cancer Progression and Metastasis 3.0)
Show Figures

Figure 1

10 pages, 6321 KB  
Article
Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand
by Alexey S. Gavrikov, Nina G. Bozhanova, Mikhail S. Baranov and Alexander S. Mishin
Int. J. Mol. Sci. 2022, 23(8), 4396; https://doi.org/10.3390/ijms23084396 - 15 Apr 2022
Cited by 1 | Viewed by 2572
Abstract
A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET [...] Read more.
A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation. Full article
(This article belongs to the Special Issue Advanced Fluorescence Methodologies: Focus on Molecular Research)
Show Figures

Figure 1

25 pages, 5226 KB  
Article
Latently KSHV-Infected Cells Promote Further Establishment of Latency upon Superinfection with KSHV
by Chen Gam ze Letova, Inna Kalt, Meir Shamay and Ronit Sarid
Int. J. Mol. Sci. 2021, 22(21), 11994; https://doi.org/10.3390/ijms222111994 - 5 Nov 2021
Cited by 4 | Viewed by 2973
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency. Full article
(This article belongs to the Special Issue Herpesviruses and Their Host Cells: EBV- and KSHV-Associated Diseases)
Show Figures

Figure 1

Back to TopTop