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Abstract: A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET
efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or
by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified
one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1.
Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent
protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The
reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows
for prolonged time-lapse experiments with dynamic energy transfer evaluation.

Keywords: FRET; fluorogen-activating proteins; FAPs

1. Introduction

The design of many molecular probes used for studying protein–protein interactions
in living cells is based on Förster resonance energy transfer (FRET) [1–4]. Still, an accurate
measurement of FRET efficiency in cellulo remains a challenging task that requires a set
of laborious control measurements, such as photobleaching of the acceptor with intense
light [5]. Other approaches for FRET quantification, including fluorescence lifetime imag-
ing, spectral imaging, and fluorescence polarization imaging, are far less accessible for
researchers and/or require expensive hardware [6].

Modulated FRET acceptors provide an alternative way of measuring FRET. These
acceptors are capable of switching between two states with different absorption properties,
effectively turning FRET “on” and “off”. Until recently, the list of modulated FRET acceptors
has been limited to just a few photochromic dyes and photochromic fluorescent proteins
(FPs) [7,8].

Fluorogen-activating proteins (FAPs) are a group of nonfluorescent proteins that do
not absorb in the visible wavelength area by themselves. Instead, they acquire these
properties upon binding to an externally provided ligand [9–11]. Therefore, in theory these
probes could be used as modulated FRET acceptors. The advantages of transient binders
as FRET acceptors were discussed [10], but to the best of our knowledge have only been
shown once using lifetime measurements [12]. Here, we report the use of a FAP (DiB1) as
a modulated genetically encoded FRET acceptor for intensity-based FRET measurement.
DiB1 is a truncated (~20.2 kDa) and mutated variant of bacterial lipocalin (Blc). In bacteria,
Blc is involved in the transfer of fatty acids. The DiB1 protein was engineered to reversibly
bind small fluorogens [11]. We evaluated the performance of the FRET pair consisting of
conventional FP mNeonGreen [13] as a donor and a bipartite acceptor, activated by the
transient interaction of the protein (DiB1) and small-molecule (compound 3 from Ref. [14])
parts. We estimate that the FRET efficiency of this donor–acceptor pair reaches ~45% in
live-cell experiments.
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2. Results and Discussion

First, we assessed the performance of the recently published protein:fluorogen com-
plex [14] as a FRET acceptor. The protein part of the reporter, DiB1, transiently binds a cell-
permeable chromophore (compound 3 from [14], (Z)-4-(4-(diethylamino)-2-(difluoroboryl)-
benzylidene)-1H-imidazo [1,2-a]pyridin-5(4H)-one, Figure 1A), resulting in a complex with
an absorbance maximum at 605 nm (Figure 1B). This compound is similar to BODIPY,
which is actively used in FRET applications [15–17]. We also tested the FRET efficiency
in pairs DiB2 and DiB3 with compound 3. We fused DiB1 with mNeonGreen, a bright
monomeric green fluorescent protein previously reported as an efficient FRET donor [18],
and measured the fluorescence spectra of the purified protein solution with or without
compound 3. Comparing the fluorescence emission of the donor before and after the
addition of compound 3, we estimated FRET efficiency between mNeonGreen FP and
the DiB1:3 complex as ~61% (Figure 1C). This value agrees with the calculated Förster
radius (~5.45 nm). As an additional control, we performed an enzymatic cleavage of
mNeonGreen-DiB1 fusion protein with proteinase K after the addition of compound 3,
resulting in the restoration of fluorescence to the initial value (Figure 1C). FRET pairs with
DiB2 and DiB3 showed very low FRET efficiency (~5–10%, data not shown) and were
excluded from further experiments.
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Figure 1. FRET efficiency measurements in vitro and in living cells. (A) Structure of compound 3. 
(B) Spectral overlap between the fluorescence emission spectrum of mNeonGreen and the absorb-
ance spectrum of the DiB1:3 complex. (C) mNeonGreen emission spectra before the compound 3 
addition (green line), after the compound 3 addition to the final concentration of 1 μM (dashed green 
line), and after the enzymatic cleavage (black line). (D) Scheme of the H2B-mNeonGreen-DiB1 used 
in live-cell experiment. (E) Fluorescence intensity of mNeonGreen in live HeLa cells transiently 
transfected with H2B-mNeonGreen (green solid line) or H2B-mNeonGreen-DiB1 (green dashed 
line); vertical dashed line indicates the addition of compound 3 to the final concentration of 3 μM; 
error bars represent standard deviation (technical replicates = 23). 

Figure 1. FRET efficiency measurements in vitro and in living cells. (A) Structure of compound 3.
(B) Spectral overlap between the fluorescence emission spectrum of mNeonGreen and the absorbance
spectrum of the DiB1:3 complex. (C) mNeonGreen emission spectra before the compound 3 addition
(green line), after the compound 3 addition to the final concentration of 1 µM (dashed green line), and
after the enzymatic cleavage (black line). (D) Scheme of the H2B-mNeonGreen-DiB1 used in live-cell
experiment. (E) Fluorescence intensity of mNeonGreen in live HeLa cells transiently transfected with
H2B-mNeonGreen (green solid line) or H2B-mNeonGreen-DiB1 (green dashed line); vertical dashed
line indicates the addition of compound 3 to the final concentration of 3 µM; error bars represent
standard deviation (technical replicates = 23).

We further tested the one-channel FRET readout of the mNeonGreen:DiB1:3 FRET pair
in live HeLa cells. We chose histone H2B fusions as a model system due to the convenience
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of nuclear localization and the slow exchange rate of this histone [19]. Therefore, the ratio
of fluorescence signal after and before the activation of the DiB1 acceptor could be reliably
determined. During the experiment, we followed the fluorescence intensity of mNeonGreen
in cells transiently transfected with the H2B-mNeonGreen-DiB1 construct (Figure 1D). The
initial level of fluorescence signal served as a baseline, corresponding to nil FRET efficiency.
Upon the addition of compound 3 to the imaging media, we observed a sharp decline in
the fluorescence signal, plateauing at ~55% of the initial intensity (Figure 1E, Figure S1).
In contrast, no fluorescence quenching was observed in control cells expressing H2B-
mNeonGreen construct, which lacks the modulated FRET acceptors (Figure 1E, Figure S2).
Therefore, the FRET efficiency of the mNeonGreen-DiB1 pair in living cells estimated by
single-channel measurement was equal to ~45%. We also conducted an additional control
experiment in which the donor and the acceptor were fused with non-interacting proteins
(H2B and vimentin, respectively). In this case, the fluorescence of the donor was not
influenced by the addition of compound 3, as expected (Figure S3).

Importantly, the fluorescence of the donor immediately before the activation of the
DiB1:3 acceptor serves as an internal control. Therefore, the full dynamic range of the
response could be extracted from single-channel imaging data without laborious control
experiments, ratiometric imaging, or acceptor photobleaching.

In principle, the transient nature of DiBs:ligand interactions allows for repetitive
FRET measurements by sequential addition and washing off the ligand over the course
of an experiment. We tested this technique in live HeLa cells transiently transfected with
H2B-mNeonGreen-DiB1 fusion protein (Figure 2A; Supplementary Movie S1). With a
simple perfusion system, we observed almost complete washing of compound 3 in our
experiments in 4 min (with a flow rate of 120 µL/min through the slide). The activation
of the acceptor after the addition of compound 3 at the same flow rate was faster; the
fluorescence intensity of the donor dropped to a minimum in about one minute. The
measured mean FRET efficiency in the repeated on–off cycles was about 45%. To ensure
swift and complete staining without compromising temporal resolution, we recommend
the use of compound 3 in excess (i.e., 3 × Kd or more). It should be noted that the fast
dynamics (kon, koff) of the DiB1:3 exchange remain unknown, hindering the design of
precise dynamic FRET measurement at the molecular level.

We further assessed the applicability of the mNeonGreen-DiB1 FRET pair for studying
protein–protein interactions. We labeled intermediate filaments (vimentin) simultaneously
with vimentin-mNeonGreen and vimentin-DiB1. Due to the random incorporation of
labeled monomers into the filaments, some vimentin monomers labeled with the donor
will be found at a sufficient distance for energy transfer from the monomers labeled
with the acceptor. In order to restrict the drift, these experiments were performed on
fixed cells. We observed a mean FRET efficiency of 45% reaching the levels observed
for donor–acceptor fusion in the previous experiment (Figure 2B,C). The observed FRET
efficiency is in firm agreement with the vimentin filament structure of densely packed
coiled coils: vimentin molecules form parallel dimers [20] and the C-terminus carrying
DiB1 and mNeonGreen should be very close. We performed a similar experiment with cells
transiently co-expressing H2B-mNeonGreen and H2B-DiB1 constructs (Figure 2D,E). The
distance between nucleosomes can be small enough to allow for FRET [21]. In this case,
FRET efficiency did not exceed 35% (mean = 21.5%).

Next, we evaluated the modulated FRET acceptor within the biosensors for the H3K9
trimethylation [22], and tension detection in focal contacts [2].

It is known that H3K9me3 modification is present mainly in heterochromatin. We
measured the FRET efficiency with our H3K9me3 biosensor (Figure 3A) in living HeLa
Kyoto cells in interphase when heterochromatin has this modification (Figure 3). We
detected a relatively high efficiency of energy transfer in the interphase nuclei of cells, while
the efficiency was unevenly distributed over the nuclei (Figure 3C,E). This distribution of
FRET efficiency is in accordance with our expectations, since the H3K9me3 modification is
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located mainly in heterochromatin, which is heterogeneously distributed throughout the
cell nucleus and can form various patterns.
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Figure 2. Possible applications of the reported FRET pair. (A) Repeating FRET activation in live
HeLa cells. Green lines represent average intensities of mNeonGreen (donor) fluorescence in labeled
nuclei of live HeLa cells transiently transfected with H2B-mNeonGreen-DiB1 construct (each line
corresponds to a different cell nucleus). (B–E) Studying protein–protein interactions. (B,C) Transient
co-transfection with vimentin-mNeonGreen and vimentin-DiB1 constructs, fixed HeLa cells. (B) Wide-
field image of vimentin fibers labeled with mNeonGreen. (C) FRET image of the same vimentin
fibers; pseudocolor indicates FRET efficiency after the addition of 3 µM compound 3. (D,E) Transient
co-transfection with H2B-mNeonGreen and H2B-DiB1 constructs, fixed HeLa cells. (D) Widefield
image of H2B-mNeonGreen. (E) FRET image of the same nucleus; pseudocolor indicates FRET
efficiency after the addition of 3 µM compound 3. Scale bars are 3 µm (vimentin) and 5 µm (H2B).
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the modulated acceptor. (A) Scheme of the new H3K9me3 biosensor and its working mechanism. Figure 3. Modified biosensor for H3K9 trimethylation evaluation based on a new FRET pair with

the modulated acceptor. (A) Scheme of the new H3K9me3 biosensor and its working mechanism.
(B,D) Widefield image of live HeLa Kyoto cells transiently transfected with modified H3K9me3
biosensor construct; scale bar is 5 µm. (C,E) Visualization of energy transfer in live HeLa Kyoto cells;
pseudocolor indicates FRET efficiency after the addition of compound 3 (3 µM). Panels C and E share
the same color scale of FRET efficiency.
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Then, we used our modified tension sensor with a modulated acceptor to demonstrate
the detection of the FRET efficiency over time (Figure 4). A living cell is constantly moving
and with this tension sensor, it is easy to see changes in the FRET efficiency in focal contacts
during cell movement. By alternately activating and deactivating the acceptor, we were
able to see changes in the FRET efficiency in focal adhesions, and as a consequence, a
change in tension during cell movement (Figure 4C, Figure S4, Supplementary Movie S2).
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Figure 4. Modified tension sensor based on a new FRET pair with the modulated acceptor. (A) Scheme
of the new tension sensor and its working mechanism. (B) Widefield image of live HeLa Kyoto cells
transiently transfected with modified tension sensor construct; scale bar is 20 µm. (C) Widefield
images of the region indicated by a yellow rectangle on panel (B) before, after compound 3 addition,
and FRET efficiency images of the same region over time (pseudocolor—FRET efficiency); scale bar is
3 µm.

Finally, we applied the modulated FRET acceptor to assess the protein–protein inter-
action of YAP1 and 14-3-3 [23] (Figure 5A). It is known that 14-3-3 locates diffusely in the
cytoplasm, while the YAP1 protein is shuffling between the cytoplasm and the nucleus,
depending on the phosphorylation, cell cycle, and other factors [24].
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Figure 5. Detection of the interaction of YAP1 and 14-3-3 proteins. (A) Scheme of labeled proteins’
localization and their interaction. (B) FRET efficiency in different cell compartments (nucleus and
cytoplasm) in experimental live HeLa Kyoto cells transiently cotransfected with two constructs, YAP1-
mNeonGreen and 14-3-3-DiB1, and in live HeLa Kyoto cells transiently transfected with construct
YAP-mNeonGreen. Red lines represent median values, green rectangles represent mean values
(technical replicates = 11). (C) Widefield image of live HeLa Kyoto cells transiently cotransfected
with YAP1-mNeonGreen and 14-3-3-DiB1 constructs. (D) Visualization of energy transfer in live
HeLa Kyoto cells from panel (C); pseudocolor indicates FRET efficiency after the addition of 3 µM
compound 3. (E) Confocal image of live HeLa Kyoto cells transiently cotransfected with YAP1-
mNeonGreen and 14-3-3-DiB1 constructs. (F) Visualization of energy transfer in live HeLa Kyoto
cells from panel (E); pseudocolor indicates FRET efficiency after the addition of 3 µM compound 3
(panels D and F share the same color scale of FRET efficiency); scale bars are 20 µm.

We labeled YAP1 and the 14-3-3 with mNeonGreen and DiB1, respectively. In live
HeLa Kyoto cells we observed mNeonGreen-labeled YAP1 in the cytoplasm. Accordingly,
we expected that after the addition of compound 3 and the activation of the acceptor, the
FRET efficiency in the cytoplasm would be higher than in the nucleus. Indeed, the FRET
efficiency in the cytoplasm turned out to be higher than in the nucleus (Figure 5B,D). In



Int. J. Mol. Sci. 2022, 23, 4396 7 of 10

control experiments, in the absence of a modulated acceptor, the fluorescence intensity of
the mNeonGreen did not change either in the cytoplasm or in the nucleus upon the addition
of compound 3 (Figure 5B). We attribute the non-zero FRET efficiency in the nucleus to
the background signal from the cytoplasm below and above the nucleus since the imaging
was carried out under a widefield epifluorescence setup. To confirm this, we performed
the same experiment under confocal microscopy conditions. We did not observe FRET in
the nucleus, since the impact of the fluorescence from the cytoplasm was eliminated in a
confocal regime (Figure 5E,F). To the best of our knowledge, the interaction of YAP1 with
14-3-3 is visualized in living HeLa Kyoto cells with FRET for the first time.

3. Materials and Methods
3.1. Molecular Cloning

Plasmids for mammalian expression encoding fusions of FP/FAP with histone H2B
(H2B-DiB1, H2B-mNeonGreen, H2B-mNeonGreen-DiB1); vimentin (vimentin-DiB1, vimen
tin-mNeonGreen); YAP1 (YAP1-mNeonGreen); 14-3-3 (14-3-3-DiB1); plasmids encoding
FP-FAP fusion with mNeonGreen-DiB1 for bacterial expression and in vitro measurements;
H3K9me3 sensor; and tension sensor were assembled using Golden Gate cloning following
MoClo standards [25–27]. Each transcriptional unit for mammalian expression consisted of
the CMV promoter, coding sequence for the fusion protein, and the SV40 terminator. All
Golden Gate cloning reactions were performed in the T4 ligase buffer (SibEnzyme, Novosi-
birsk, Russia) supplied with 10 U of T4 ligase, 20 U of either BsaI or BpiI (ThermoFisher,
Waltham, USA), and 100 ng of each DNA fragment. Golden Gate reactions were performed
with the following cycling conditions: 30 cycles between 37 ◦C and 16 ◦C (90 sec at 37 ◦C,
180 s at 16 ◦C).

3.2. Protein Expression and Purification

The fusion protein mNeonGreen-DiB1 was cloned into pBAD/His vector and ex-
pressed in Top10 E. coli cells. One bacterial colony was inoculated into 200 mL of LB broth
and grown to OD600 = 0.1 at 37 ◦C. Expression of the recombinant proteins was induced
with L-arabinose (to a final concentration of 7 mM). After 16 h at 37 ◦C, cells were harvested
and resuspended in 5 mL of PBS buffer (pH 7.4, VWR chemicals). Cells were destroyed by
sonication and centrifuged to obtain cell-free lysates. Proteins were purified using TALON
metal affinity resin (Clontech). Resin was washed with 15–20 volumes of PBS. Then, resin
beads were washed with PBS supplemented with 0.1M EDTA (pH 7.4) to elute proteins.
Finally, the protein samples were dialyzed against PBS (pH 7.4).

3.3. Fluorescence Spectra and Förster Radius Evaluation

Fluorescence emission spectra were recorded on an Agilent Cary Eclipse fluorescence
spectrophotometer. Spectra were acquired without and in the presence of compound 3
(final concentration—1 µM). The typical protein concentration was 100 nM. Enzymatic
cleavage was performed with proteinase K (2.5 U). Förster radius was computed using
python script from [28].

3.4. Cell Culture and Transient Transfection

HeLa cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) (PanEco,
Moscow, Russia) supplied with 50 U/mL penicillin and 50 µg/mL streptomycin (PanEco,
Moscow, Russia), 2 mM L-glutamine (PanEco, Moscow, Russia), and 10% fetal bovine
serum (HyClone, Thermo Scientific, Waltham, USA) at 37 ◦C and 5% CO2. For transient
transfection, FuGENE HD reagent (Promega, Madison, USA) was used. A standard
protocol was used to set up transfection; the DNA:reagent mixture was incubated for
20 min prior to the addition to the cells. Typically, 1 µg of DNA and 3 µL of the reagent
were used. Transfection was performed in a serum-free OptiMEM (PanEco, Moscow,
Russia). Immediately before imaging, DMEM was replaced with Hanks’ Buffer (PanEco,
Moscow, Russia) supplemented with 20 mM HEPES (Sigma, Darmstadt, Germany).
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3.5. Cell Culture Fixation

Before imaging, cell cultures cotransfected with H2B-mNeonGreen and H2B-DiB1, or
vimentin-mNeonGreen and vimentin-DiB1s, were fixed with 2% (w/v) paraformaldehyde
(Merck, Darmstadt, Germany) and washed four times with Hanks’ buffer supplemented
with 20 mM HEPES.

3.6. Widefield Fluorescence Microscopy and Washing

Widefield fluorescence microscopy was performed with Leica 6000, Leica HCX PL
APO 100X/1.40–0.70NA oil immersion objective, Zyla sCMOS camera (Andor, Oxford,
UK), and CoolLED pE-300 light source. A GFP cube filter set (Leica, Wetzlar, Germany)
was used (excitation filter: 470/40, dichroic mirror: 500, suppression filter: 525/50). Typical
illumination power ranged from 1 to 6 W/cm2 with exposure times ranging from 50 to
150 ms. Experiments with repeated FRET measurements were performed with live cells
cultured on µ–Slide I 0.4 Luer ibiTreat (Ibidi, Gräfelfing, Germany) slides. The alternating
flow of HHBS (Hanks’ buffer with 20 mM Hepes) or HHBS supplemented with compound
3 (3 µM) through a µ–Slide was driven by a custom-made syringe pump injection system
controlled by Raspberry Pi 3. Flow speed was set to 120 µL/min, providing a full exchange
of the media in the µ–Slide in ~1 min.

3.7. Confocal Microscopy

Confocal imaging was performed using TSC SP2 (Leica Microsystem, Germany) based
on an inverted fluorescent microscope Leica DM IRE equipped with HCX PL APO Lbd.BL
63 × 1.40 oil lens and an argon laser. Images were acquired with the excitation by the
488 nm line of the argon laser (≈9 µW), with the emission collected at 500–550 nm.

3.8. FRET Efficiency Measurements

The widefield epifluorescence images before and after the addition of compound 3
were aligned in FIJI [29] software to correct for cell movement, followed by the background
subtraction and 2x downsampling. Finally, the image acquired after acceptor activation
was divided (pixelwise) by the image before acceptor activation. The FRET efficiency value
was calculated by the subtraction of the resulting ratio image from 1.

4. Conclusions

Ligand-exchanging fluorogen-activating proteins, such as DiB1, provide robust tempo-
ral control over protein labeling. In this work, we showed the utility of DiB1 as a modulated
FRET acceptor with in-place reference. In contrast to the irreversible bipartite labeling
systems, such as HaloTag and SNAP-Tag [30], labeling with exchangeable tags allows for
fast on-demand staining, improved photostability, and multiplex high-content imaging [31].
The changes in the fluorescence signal in sequential staining–washing cycles provided the
estimate of FRET in time-lapse experiments. In the future, our system can be improved by
finding a “dark” chromophore as an acceptor activator, freeing up an additional imaging
channel. Moreover, the combined use of DiB1 and other orthogonal exchangeable protein–
fluorogen labeling systems, such as FAST [10,12], will add additional dimensions for the
multiplex functional imaging of cellular processes.
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