Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = lung shunting fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1468 KiB  
Article
Initial Experience with Single-Session Resin-Based Transarterial Radioembolization Mapping and Treatment of Small Hepatocellular Carcinomas
by Michael Mohnasky, Sandra Gad, Marco Fanous, Johannes L. Du Pisanie, Marija Ivanovic, David M. Mauro, Hyeon Yu, Alex Villalobos, Andrew M. Moon, Hanna K. Sanoff, Jingquan Jia and Nima Kokabi
Cancers 2025, 17(8), 1265; https://doi.org/10.3390/cancers17081265 - 9 Apr 2025
Viewed by 960
Abstract
Background/Objectives: Studies have indicated that forgoing lung shunt fraction measurement in select patients undergoing Yttrium 90 (Y90) transarterial radioembolization (TARE) may be safe without sacrificing efficacy. This study evaluated the safety and efficacy of a streamlined treatment in patients with small hepatocellular carcinoma [...] Read more.
Background/Objectives: Studies have indicated that forgoing lung shunt fraction measurement in select patients undergoing Yttrium 90 (Y90) transarterial radioembolization (TARE) may be safe without sacrificing efficacy. This study evaluated the safety and efficacy of a streamlined treatment in patients with small hepatocellular carcinoma (HCC) receiving resin-based TARE. Methods: Patients who received single-session Y90 TARE between September 2023 and May 2024 were retrospectively evaluated. Treatment response was evaluated at the 3-month follow-up using the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. Adverse events (AEs) ≥ Grade 3 were recorded post-procedurally at 3 months. The time from the interventional radiology clinic visit to the procedure date was compared to patients receiving the conventional TARE treatment. Results: Ten consecutive patients were treated with 12 treatments. Each treatment targeted an isolated lesion with median size of 2.5 cm (IQR: 2.1, 2.9). Two patients received two treatments (one for treatment of a separate lesion and the other for the initial incomplete targeting of the tumor). The median delivered tumor dose was 377.7 Gy (IQR: 246.5, 570.1). No patients developed ≥ Grade 3 AEs post-TARE. Complete response was achieved in 11/12 patients (92%). The conventional cohort consisted of 60 patients, all OPTN T2 treated with radiation segmentectomy with glass microspheres. Patients undergoing SSMT had a median time from clinic visit to treatment of 26.5 days (IQR: 15.3, 39) vs. 61 days (IQR: 48, 88.8) in the conventional TARE group (p < 0.001). Conclusions: Streamlined single-session resin-based Y90-TARE in patients with OPTN T2 stage HCC is feasible, efficacious, safe, and associated with reduced time to treatment. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 2929 KiB  
Article
Assessment of Autoregulation of the Cerebral Circulation during Acute Lung Injury in a Neonatal Porcine Model
by Asli Memisoglu, Martha Hinton, Yasser Elsayed, Ruth Graham and Shyamala Dakshinamurti
Children 2024, 11(5), 611; https://doi.org/10.3390/children11050611 - 20 May 2024
Cited by 1 | Viewed by 1911
Abstract
In neonates with acute lung injury (ALI), targeting lower oxygenation saturations is suggested to limit oxygen toxicity while maintaining vital organ function. Although thresholds for cerebral autoregulation are studied for the management of premature infants, the impact of hypoxia on hemodynamics, tissue oxygen [...] Read more.
In neonates with acute lung injury (ALI), targeting lower oxygenation saturations is suggested to limit oxygen toxicity while maintaining vital organ function. Although thresholds for cerebral autoregulation are studied for the management of premature infants, the impact of hypoxia on hemodynamics, tissue oxygen consumption and extraction is not well understood in term infants with ALI. We examined hemodynamics, cerebral autoregulation and fractional oxygen extraction, as measured by near-infrared spectroscopy (NIRS) and blood gases, in a neonatal porcine oleic acid injury model of moderate ALI. We hypothesized that in ALI animals, cerebral oxygen extraction would be increased to a greater degree than kidney or gut oxygen extraction as indicative of the brain’s adaptive efforts to increase cerebral oxygen extraction at the expense of splanchnic end organs. Fifteen anesthetized, ventilated 5-day-old neonatal piglets were divided into moderate lung injury by treatment with oleic acid or control (sham injection). The degree of lung injury was quantified at baseline and after establishment of ALI by blood gases, ventilation parameters and calculated oxygenation deficit, hemodynamic indices by echocardiography and lung injury score by ultrasound. PaCO2 was maintained constant during ventilation. Cerebral, renal and gut oxygenation was determined by NIRS during stepwise decreases in inspired oxygen from 50% to 21%, correlated with PaO2 and PvO2; changes in fractional oxygen extraction (ΔFOE) were calculated from NIRS and from regional blood gas samples. The proportion of cerebral autoregulation impairment attributable to blood pressure, and to hypoxemia, was calculated from autoregulation nomograms. ALI manifested as hypoxemia with increasing intrapulmonary shunt fraction, decreased lung compliance and increased resistance, and marked increase in lung ultrasound score. Brain, gut and renal NIRS, obtained from probes placed over the anterior skull, central abdomen and flank, respectively, correlated with concurrent SVC (brain) or IVC (gut, renal) PvO2 and SvO2. Cerebral autoregulation was impaired after ALI as a function of blood pressure at all FiO2 steps, but predominantly by hypoxemia at FiO2 < 40%. Cerebral ΔFOE was higher in ALI animals at all FiO2 steps. We conclude that in an animal model of neonatal ALI, cerebrovascular blood flow regulation is primarily dependent on oxygenation. There is not a defined oxygenation threshold below which cerebral autoregulation is impaired in ALI. Cerebral oxygen extraction is enhanced in ALI, reflecting compensation for exhausted cerebral autoregulation due to the degree of hypoxemia and/or hypotension, thereby protecting against tissue hypoxia. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

12 pages, 2313 KiB  
Article
The Role of Lung Density in the Voxel-Based Dosimetry of 90Y-TARE Evaluated with the Voxel S-Value (VSV) Method and Fast Monte Carlo Simulation
by Amedeo Capotosti, Roberto Moretti, Maria Vaccaro, Cintia De Almeida Ribeiro, Lorenzo Placidi, Matteo Nardini, Guenda Meffe, Davide Cusumano, Luca Zagaria, Marina De Risi, Germano Perotti, Lucia Leccisotti, Marco De Spirito, Roberto Iezzi and Luca Indovina
Appl. Sci. 2024, 14(3), 1019; https://doi.org/10.3390/app14031019 - 25 Jan 2024
Cited by 2 | Viewed by 2153
Abstract
(1) Background: In 90Y-TARE treatments, lung-absorbed doses should be calculated according to the manufacturer’s instructions, using the MIRD-scheme. This scheme is derived from the assumption that 90Y-microspheres deliver the dose in a water-equivalent medium. Since the density of the lungs is [...] Read more.
(1) Background: In 90Y-TARE treatments, lung-absorbed doses should be calculated according to the manufacturer’s instructions, using the MIRD-scheme. This scheme is derived from the assumption that 90Y-microspheres deliver the dose in a water-equivalent medium. Since the density of the lungs is quite different from that of the liver, the absorbed dose to the lungs could vary considerably, especially at the liver/lungs interface. The aim of this work is to compare the dosimetric results obtained by two dedicated software packages implementing a water-equivalent dose calculation and a Monte Carlo (MC) simulation, respectively. (2) Methods: An anthropomorphic IEC phantom and a retrospective selection of 24 patients with a diagnosis of HCC were taken into account. In the phantom study, starting from a 90Y-PET/CT acquisition, the liver cavity was manually fixed with a uniform activity concentration on PET series, while the lung compartment was manually expanded on a CT series to simulate a realistic situation in which the liver and lungs are adjacent. These steps were performed by using MIM 90Y SurePlan. Then, a first simulation was carried out with only the liver cavity filled, while a second one was carried out, in which the lung compartment was also manually fixed with a uniform activity concentration corresponding to 10% lung shunt fraction. MIM 90Y SurePlan was used to obtain Voxel S-Value (VSV) approach dose values; instead, Torch was used to obtain MC approach dose values for both the phantom and the patients. (3) Results: In the phantom study, the percentage mean dose differences (∆D%) between VSV and MC in the first and second simulation, respectively were found to be 1.2 and 0.5% (absolute dose variation, ∆D, of 0.7 and 0.3 Gy) for the liver, −56 and 70% (∆D of −0.3 and −16.2 Gy) for the lungs, and −48 and −60% (∆D of −4.3 and −16.5 Gy) for the Liver/Lungs Edge region. The patient study reports similar results with ∆D% between VSV and MC of 7.0%, 4.1% and 6.7% for the whole liver, healthy liver, and tumor, respectively, while the result was −61.2% for the left lung and −61.1% for both the right lung and lungs. (4) Conclusion: Both VSV and MC allowed accurate radiation dose estimation with small differences (<7%) in regions of uniform water-equivalent density (i.e., within the liver). Larger differences between the two methods (>50%) were observed for air-equivalent regions in the phantom simulation and the patient study. Full article
Show Figures

Figure 1

9 pages, 1123 KiB  
Article
Hemodynamic and Respiratory Changes following Prone Position in Acute Respiratory Distress Syndrome Patients: A Clinical Study
by Maria Baka, Dimitra Bagka, Vasiliki Tsolaki, George E. Zakynthinos, Chrysi Diakaki, Konstantinos Mantzarlis and Demosthenes Makris
J. Clin. Med. 2023, 12(3), 760; https://doi.org/10.3390/jcm12030760 - 18 Jan 2023
Cited by 4 | Viewed by 2494
Abstract
Background: Limited data are available for the oxygenation changes following prone position in relation to hemodynamic and pulmonary vascular variations in acute respiratory distress syndrome (ARDS), using reliable invasive methods. We aimed to assess oxygenation and hemodynamic changes between the supine and prone [...] Read more.
Background: Limited data are available for the oxygenation changes following prone position in relation to hemodynamic and pulmonary vascular variations in acute respiratory distress syndrome (ARDS), using reliable invasive methods. We aimed to assess oxygenation and hemodynamic changes between the supine and prone posture in patients with ARDS and identify parameters associated with oxygenation improvement. Methods: Eighteen patients with ARDS under protective ventilation were assessed using advanced pulmonary artery catheter monitoring. Physiologic parameters were recorded at baseline supine position, 1 h and 18 h following prone position. Results: The change in the Oxygenation Index (ΔOI) between supine and 18 h prone significantly correlated to the concurrent change in shunt fraction (r = 0.75, p = 0.0001), to the ΔOI between supine and 1 h prone (r = 0.73, p = 0.001), to the supine acute lung injury score and the OI (r = −0.73, p = 0.009 and r = 0.69, p = 0.002, respectively). Cardiac output did not change between supine and prone posture. Moreover, there was no change in pulmonary pressure, pulmonary vascular resistances, right ventricular (RV) volumes and the RV ejection fraction. Conclusions: The present investigation provides physiologic clinical data supporting that oxygenation improvement following prone position in ARDS is driven by the shunt fraction reduction and not by changes in hemodynamics. Moreover, oxygenation improvement was not correlated with RV or pulmonary circulation changes. Full article
(This article belongs to the Special Issue New Insights of Respiratory and Critical Care Research)
Show Figures

Figure 1

11 pages, 2310 KiB  
Article
Prediction of Lung Shunt Fraction for Yttrium-90 Treatment of Hepatic Tumors Using Dynamic Contrast Enhanced MRI with Quantitative Perfusion Processing
by Qihao Zhang, Kyungmouk Steve Lee, Adam D. Talenfeld, Pascal Spincemaille, Martin R. Prince and Yi Wang
Tomography 2022, 8(6), 2687-2697; https://doi.org/10.3390/tomography8060224 - 3 Nov 2022
Cited by 5 | Viewed by 3333
Abstract
There is no noninvasive method to estimate lung shunting fraction (LSF) in patients with liver tumors undergoing Yttrium-90 (Y90) therapy. We propose to predict LSF from noninvasive dynamic contrast enhanced (DCE) MRI using perfusion quantification. Two perfusion quantification methods were used to process [...] Read more.
There is no noninvasive method to estimate lung shunting fraction (LSF) in patients with liver tumors undergoing Yttrium-90 (Y90) therapy. We propose to predict LSF from noninvasive dynamic contrast enhanced (DCE) MRI using perfusion quantification. Two perfusion quantification methods were used to process DCE MRI in 25 liver tumor patients: Kety’s tracer kinetic modeling with a delay-fitted global arterial input function (AIF) and quantitative transport mapping (QTM) based on the inversion of transport equation using spatial deconvolution without AIF. LSF was measured on SPECT following Tc-99m macroaggregated albumin (MAA) administration via hepatic arterial catheter. The patient cohort was partitioned into a low-risk group (LSF  10%) and a high-risk group (LSF > 10%). Results: In this patient cohort, LSF was positively correlated with QTM velocity |u| (r = 0.61, F = 14.0363, p = 0.0021), and no significant correlation was observed with Kety’s parameters, tumor volume, patient age and gender. Between the low LSF and high LSF groups, there was a significant difference for QTM |u| (0.0760 ± 0.0440 vs. 0.1822 ± 0.1225 mm/s, p = 0.0011), and Kety’s Ktrans (0.0401 ± 0.0360 vs 0.1198 ± 0.3048, p = 0.0471) and Ve (0.0900 ± 0.0307 vs. 0.1495 ± 0.0485, p = 0.0114). The area under the curve (AUC) for distinguishing between low LSF and high LSF was 0.87 for |u|, 0.80 for Ve and 0.74 for Ktrans. Noninvasive prediction of LSF is feasible from DCE MRI with QTM velocity postprocessing. Full article
(This article belongs to the Special Issue New Advances in Medical Imaging and Applied Radiology in Cancers)
Show Figures

Figure 1

10 pages, 788 KiB  
Article
Effects of Iloprost on Oxygenation during One-Lung Ventilation in Patients with Low Diffusing Capacity for Carbon Monoxide: A Randomized Controlled Study
by Kyuho Lee, Young Jun Oh, Mina Kim, Sei Han Song and Namo Kim
J. Clin. Med. 2022, 11(6), 1542; https://doi.org/10.3390/jcm11061542 - 11 Mar 2022
Cited by 3 | Viewed by 2264
Abstract
The protective mechanism of hypoxic pulmonary vasoconstriction during one-lung ventilation (OLV) is impaired in patients with a low diffusing capacity for carbon monoxide (DLCO). We hypothesized that iloprost inhalation would improve oxygenation and lung mechanics in patients with low DLCO [...] Read more.
The protective mechanism of hypoxic pulmonary vasoconstriction during one-lung ventilation (OLV) is impaired in patients with a low diffusing capacity for carbon monoxide (DLCO). We hypothesized that iloprost inhalation would improve oxygenation and lung mechanics in patients with low DLCO who underwent pulmonary resection. Forty patients with a DLCO < 75% were enrolled. Patients were allocated into either an iloprost group (ILO group) or a control group (n = 20 each), in which iloprost and saline were inhaled, respectively. The partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, pulmonary shunt fraction, alveolar dead space, dynamic compliance, and hemodynamic parameters were assessed 20 min after the initiation of OLV and 20 min after drug administration. Repeated variables were analyzed using a linear mixed model between the groups. Data from 39 patients were analyzed. After iloprost inhalation, the ILO group exhibited a significant increase in the PaO2/FiO2 ratio and a decrease in alveolar dead space compared with the control group (p = 0.025 and p = 0.042, respectively). Pulmonary shunt, dynamic compliance, hemodynamic parameters, and short-term prognosis were comparable between the two groups. Selective iloprost administration during OLV reduced alveolar dead space and improved oxygenation while minimally affecting hemodynamics and short-term prognosis. Full article
(This article belongs to the Special Issue Anesthetic Management in Perioperative Period)
Show Figures

Figure 1

13 pages, 1603 KiB  
Article
Effect of 15° Reverse Trendelenburg Position on Arterial Oxygen Tension during Isoflurane Anesthesia in Horses
by Laura Tucker, Daniel Almeida, Erin Wendt-Hornickle, Caroline F. Baldo, Sandra Allweiler and Alonso G. P. Guedes
Animals 2022, 12(3), 353; https://doi.org/10.3390/ani12030353 - 1 Feb 2022
Cited by 2 | Viewed by 5749
Abstract
Lower than expected arterial oxygen tension (PaO2) continues to be an unresolved problem in equine anesthesia. The aim of this randomized, crossover, and prospective study using six adult horses is to determine if a 15° reverse Trendelenburg position (RTP) increases PaO [...] Read more.
Lower than expected arterial oxygen tension (PaO2) continues to be an unresolved problem in equine anesthesia. The aim of this randomized, crossover, and prospective study using six adult horses is to determine if a 15° reverse Trendelenburg position (RTP) increases PaO2 during inhalation anesthesia. Under constant-dose isoflurane anesthesia, dorsally recumbent horses were positioned either horizontally (HP) or in a 15° RTP for 2 h. Lungs were mechanically ventilated (15 mL/kg, 6 breaths/min). Arterial carbon dioxide tension (PaCO2), PaO2, inspired oxygen fraction (FiO2), and end-tidal carbon dioxide tension (EtCO2) were determined every 30 min during anesthesia. Indices of dead-space ventilation (Vd/Vt), oxygenation (P–F ratio), and perfusion (F–shunt) were calculated. Dobutamine and phenylephrine were used to support mean arterial pressure (MAP). Data are presented as median and range. In one horse, which was deemed an outlier due to its thoracic dimensions and body conformation, indices of oxygenation worsened in RTP compared to HP (median PaO2 438 vs. 568 mmHg; P–F ratio 454 vs. 586 mmHg, and F–shunt 13.0 vs. 5.7 mmHg). This horse was excluded from calculations. In the remaining five horses they were significantly better with RTP compared to HP. Results in remaining five horses showed that PaO2 (502, 467–575 vs. 437, 395–445 mmHg), P-F ratio (518, 484–598 vs. 455, 407–458 mmHg), and F-shunt (10.1, 4.2–11.7 vs. 14.2, 13.8–16.0 mmHg) were significantly different between RTP and HP (p = 0.03). Other variables were not significantly different. In conclusion, the 15° RTP resulted in better oxygenation than HP in dorsally recumbent, isoflurane-anesthetized horses, although worsening of oxygenation may occur in individual horses. A study detailing the cardiovascular consequences of RTP is necessary before it can be recommended for clinical practice. Full article
(This article belongs to the Special Issue Anesthesia and Analgesia in Equids)
Show Figures

Figure 1

11 pages, 980 KiB  
Article
Red Bull Increases Heart Rate at Near Sea Level and Pulmonary Shunt Fraction at High Altitude in a Porcine Model
by Benedikt Treml, Elisabeth Schöpf, Ralf Geiger, Christian Niederwanger, Alexander Löckinger, Axel Kleinsasser and Mirjam Bachler
Nutrients 2020, 12(6), 1738; https://doi.org/10.3390/nu12061738 - 10 Jun 2020
Cited by 3 | Viewed by 4937
Abstract
Red Bull energy drink is popular among athletes, students and drivers for stimulating effects or enhancing physical performance. In previous work, Red Bull has been shown to exert manifold cardiovascular effects at rest and during exercise. Red Bull with caffeine as the main [...] Read more.
Red Bull energy drink is popular among athletes, students and drivers for stimulating effects or enhancing physical performance. In previous work, Red Bull has been shown to exert manifold cardiovascular effects at rest and during exercise. Red Bull with caffeine as the main ingredient increases blood pressure in resting individuals, probably due to an increased release of (nor)-epinephrine. Red Bull has been shown to alter heart rate or leaving it unchanged. Little is known about possible effects of caffeinated energy drinks on pulmonary ventilation/perfusion distribution at sea level or at altitude. Here, we hypothesized a possible alteration of pulmonary blood flow in ambient air and in hypoxia after Red Bull consumption. We subjected eight anesthetized piglets in normoxia (FiO2 = 0.21) and in hypoxia (FiO2 = 0.13), respectively, to 10 mL/kg Red Bull ingestion. Another eight animals served as controls receiving an equivalent amount of saline. In addition to cardiovascular data, ventilation/perfusion distribution of the lung was assessed by using the multiple inert gas elimination technique (MIGET). Heart rate increased in normoxic conditions but was not different from controls in acute short-term hypoxia after oral Red Bull ingestion in piglets. For the first time, we demonstrate an increased fraction of pulmonary shunt with unchanged distribution of pulmonary blood flow after Red Bull administration in acute short-term hypoxia. In summary, these findings do not oppose moderate consumption of caffeinated energy drinks even at altitude at rest and during exercise. Full article
(This article belongs to the Special Issue Coffee and Caffeine Consumption for Human Health)
Show Figures

Figure 1

10 pages, 907 KiB  
Article
The Effects of Iloprost on Oxygenation During One-Lung Ventilation for Lung Surgery: A Randomized Controlled Trial
by Hoon Choi, Joonpyo Jeon, Jaewon Huh, Jungmin Koo, Sungwon Yang and Wonjung Hwang
J. Clin. Med. 2019, 8(7), 982; https://doi.org/10.3390/jcm8070982 - 5 Jul 2019
Cited by 17 | Viewed by 3115
Abstract
Hypoxemia can occur during one-lung ventilation (OLV) in thoracic surgery, leading to perioperative complications. Inhaled iloprost is a selective pulmonary vasodilator with efficacy in patients with pulmonary hypertension. The purpose of this study was to evaluate the effects of off-label inhaled iloprost on [...] Read more.
Hypoxemia can occur during one-lung ventilation (OLV) in thoracic surgery, leading to perioperative complications. Inhaled iloprost is a selective pulmonary vasodilator with efficacy in patients with pulmonary hypertension. The purpose of this study was to evaluate the effects of off-label inhaled iloprost on oxygenation during OLV in patients undergoing lung surgery. Seventy-two patients who were scheduled for elective video-assisted thoracoscopic lobectomy were assigned to receive an inhaled nebulizer of distilled water (control group), 10 μg iloprost (IL10 group), or 20 μg iloprost (IL20 group). Arterial and venous blood gas and hemodynamic analyses were obtained. Changes in partial pressure of oxygen in arterial blood (PaO2), after the initiation of OLV and the resumption two-lung ventilation (TLV), were similar in all three groups. However, PaO2 in the IL10 group was comparable to that in the control group, whereas PaO2 in the IL20 group was significantly higher than that in the control group at 10, 20, and 30 min after administration of iloprost (275.1 ± 50.8 vs. 179.3 ± 38.9, p < 0.0001; 233.9 ± 39.7 vs. 155.1 ± 26.5, p < 0.0001; and 224.6 ± 36.4 vs. 144.0 ± 22.9, p < 0.0001, respectively). The shunt fraction in the IL20 group was significantly higher than that in the control group after administration of iloprost (26.8 ± 3.1 vs. 32.2 ± 3.4, p < 0.0001; 24.6 ± 2.2 vs. 29.9 ± 3.4, p < 0.0001; and 25.3 ± 2.0 vs. 30.8 ± 3.1, p < 0.0001, respectively). Administration of inhaled iloprost during OLV improves oxygenation and decreases intrapulmonary shunt. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

Back to TopTop