Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = low-intensity shower

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 724 KiB  
Article
Alleviating Heat Stress in Fattening Pigs: Low-Intensity Showers in Critical Hours Alter Body External Temperature, Feeding Pattern, Carcass Composition, and Meat Quality Characteristics
by José Segura, Luis Calvo, Rosa Escudero, Ana Isabel Rodríguez, Álvaro Olivares, Beatriz Jiménez-Gómez and Clemente José López-Bote
Animals 2024, 14(11), 1661; https://doi.org/10.3390/ani14111661 - 1 Jun 2024
Cited by 1 | Viewed by 1963
Abstract
Heat stress is a significant environmental problem that has a detrimental impact on animal welfare and production efficiency in swine farms. The current study was conducted to assess the effect of low-intensity showers, provided during critical high-temperature hours daily, on body external temperature, [...] Read more.
Heat stress is a significant environmental problem that has a detrimental impact on animal welfare and production efficiency in swine farms. The current study was conducted to assess the effect of low-intensity showers, provided during critical high-temperature hours daily, on body external temperature, feeding pattern, and carcass and meat quality characteristics in fattening pigs. A total of 400 animals (200 barrows and 200 gilts) were randomly allotted in 40 pens. A shower nozzle was installed over 20 pens (half barrows and half gilts) where pigs received a low-intensity shower for 2 min in 30 min intervals from 12 to 19 h (SHO group). Another group without showers was also considered (CON). Feeder occupancy measurement, thermographic measures, and carcass and meat quality parameters were studied. In the periods with higher environmental temperatures, SHO animals showed an increase in the feeder occupancy rate compared to the CON group. A decrease in temperature was observed after the shower, regardless of the anatomical location (p < 0.005). The treatment with showers led to higher values than in the CON group of 4.72%, 3.87%, 11.8%, and 15.1% for hot carcass weight, lean meat yield, and fat thickness in Longissimus Dorsi (LD) and Gluteus Medius muscles, respectively (p < 0.01). Pork from CON showed a 14.9% higher value of drip loss, and 18.9% higher malondialdehyde concentration than SHO (p < 0.01); meanwhile, intramuscular fat content was 22.8% higher in SHO than in CON (p < 0.01). On the other hand, the CON group exhibited higher L* (2.13%) and lower a* and b* values (15.8% and 8.97%) compared to the SHO group. However, the pH20h of the CON group was significantly lower than that of the SHO group (p < 0.001), indicating a softer pH decrease. Related to fatty acids in subcutaneous outer and inner layers and intramuscular fat, the CON group showed higher ΣSFA and lower ΣMUFA and Δ9-desaturase indexes than SHO (p < 0.05). In conclusion, the amelioration of heat stress through showers at critical times should be considered an interesting tool that improves both carcass and meat quality, as well as animal welfare. Full article
(This article belongs to the Special Issue Welfare-Enhanced Meat Production)
Show Figures

Figure 1

19 pages, 9343 KiB  
Review
A Step from Vulnerability to Resilience: Restoring the Landscape Water-Storage Capacity of the Great Hungarian Plain—An Assessment and a Proposal
by Gábor Timár, Gusztáv Jakab and Balázs Székely
Land 2024, 13(2), 146; https://doi.org/10.3390/land13020146 - 26 Jan 2024
Cited by 6 | Viewed by 12026
Abstract
The extreme drought in Europe in 2022 also hit hard the Great Hungarian Plain. In this short overview article, we summarize the natural environmental conditions of the region and the impact of river control works on the water-retention capacity of the landscape. In [...] Read more.
The extreme drought in Europe in 2022 also hit hard the Great Hungarian Plain. In this short overview article, we summarize the natural environmental conditions of the region and the impact of river control works on the water-retention capacity of the landscape. In this respect, we also review the impact of intensive agricultural cultivation on soil structure and on soil moisture in light of the meteorological elements of the 2022 drought. The most important change is that the soil stores much less moisture than in the natural state; therefore, under the meteorological conditions of summer 2022, the evapotranspiration capacity was reduced. As a result, the low humidity in the air layers above the ground is not sufficient to trigger summer showers and thunderstorms associated with weather fronts and local heat convection anymore. Our proposed solution is to restore about one-fifth of the area to the original land types and usage before large-field agriculture. Low-lying areas should be transformed into a mosaic-like landscape with good water supply and evapotranspiration capacity to humidify the lower air layers. Furthermore, the unfavorable soil structure that has resulted from intensive agriculture should also be converted into more permeable soil to enhance infiltration. Full article
(This article belongs to the Special Issue Water Resources and Land Use Planning II)
Show Figures

Figure 1

14 pages, 1522 KiB  
Article
Generator for Large Fluxes of Kaons and Pions Using Laser-Induced Nuclear Processes in Ultra-Dense Hydrogen H(0)
by Leif Holmlid
Energies 2022, 15(24), 9391; https://doi.org/10.3390/en15249391 - 12 Dec 2022
Cited by 4 | Viewed by 5100
Abstract
Laser-induced nuclear reactions in ultra-dense hydrogen H(0) produce mesons with both relatively low kinetic energy and with high kinetic energy. The kaons have up to 100 MeV of kinetic energy, thus a velocity of 0.55 c. Each laser pulse of >0.1 J of [...] Read more.
Laser-induced nuclear reactions in ultra-dense hydrogen H(0) produce mesons with both relatively low kinetic energy and with high kinetic energy. The kaons have up to 100 MeV of kinetic energy, thus a velocity of 0.55 c. Each laser pulse of >0.1 J of energy and length of 5 ns produces 1013 mesons. The operation of the meson generator is here demonstrated by measuring all decay times for mesons in the ns range after induction by a pulsed laser. These decay times are the unique fingerprints of the mesons, and they also produce the kinetic energy of the mesons created from their time-dilated decay. The charged pion decay time at rest from this generator is measured to be 25.92 ± 0.04 ns (standard fit error), in reasonable agreement with the tabulated results of 26.033 ns. A similar accuracy is found for the other mesons as for the charged kaons, with 96 MeV of kinetic energy, at 14.81 ± 0.05 ns. The same general behaviour is found with both deuterium and normal hydrogen forming the ultra-dense phase H(0) on the laser target. This meson generator gives intense meson showers useful for many types of particle physics experiments at a small fraction of the cost of using particle accelerators. A particle accelerator would need an energy of at least 1021 eV to produce a similar shower of 1013 mesons. Thus, the described generator is among the most intense meson sources that exist. Other important applications include nuclear energy generation and particle (pion) radiation for cancer treatment. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

20 pages, 3056 KiB  
Article
Comfort of Domestic Water in Residential Buildings: Flow, Temperature and Energy in Draw-Off Points: Field Study in Two Danish Detached Houses
by Anna Marszal-Pomianowska, Rasmus Lund Jensen, Michal Pomianowski, Olena Kalyanova Larsen, Jacob Scharling Jørgensen and Sofie Sand Knudsen
Energies 2021, 14(11), 3314; https://doi.org/10.3390/en14113314 - 4 Jun 2021
Cited by 17 | Viewed by 2859
Abstract
There is very little knowledge on the occupant actual hot water comfort (temperature and flow), usage practice, and routines (temporal and spatial distribution of hot water usage in a household). This paper describes the results from the total and hot water measurements in [...] Read more.
There is very little knowledge on the occupant actual hot water comfort (temperature and flow), usage practice, and routines (temporal and spatial distribution of hot water usage in a household). This paper describes the results from the total and hot water measurements in two Danish detached houses. The results show that, at the draw-off points, the temperature of 55 °C is never asked by the occupants, not even in the kitchen sink. The domestic water temperature differentiates depending on the function of the draw-off point, with the shower and kitchen taps being most energy- and water-intense. They constitute around 90% of the hot water use in the house. Shower units on average demand for highest temperature (i.e., 35.5 °C to 40.4 °C). Hand washing operates, on average, at temperature between 20.5 °C to 26.5 °C. Average water temperature at the taps located in utility room varies between 23 °C to 26 °C. These in-depth insight in the total and hot water use in two new-built low energy houses, can a) help building professionals designing more efficient hot water installations; b) enhance the research work on energy flexibility buildings by providing knowledge on most energy-intensive draw-off points; and c) facilitate district heating professionals in improving the network performance. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop