Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = low-cost seismograph

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11002 KiB  
Article
Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity
by Ioannis Vlachos, Marios N. Anagnostou, Markos Avlonitis and Vasileios Karakostas
GeoHazards 2025, 6(1), 4; https://doi.org/10.3390/geohazards6010004 - 29 Jan 2025
Viewed by 4140
Abstract
The use of a dense network of commercial high-cost seismographs for earthquake monitoring is often financially unfeasible. A viable alternative to address this limitation is the development of a network of low-cost seismographs capable of monitoring local seismic events with a precision comparable [...] Read more.
The use of a dense network of commercial high-cost seismographs for earthquake monitoring is often financially unfeasible. A viable alternative to address this limitation is the development of a network of low-cost seismographs capable of monitoring local seismic events with a precision comparable to that of high-cost instruments within a specified distance from the epicenter. The primary aim of this study is to compare the performance of an advanced, contemporary low-cost seismograph with that of a commercial, high-cost seismograph. The proposed system is enhanced through the integration of a 24-bit analog-to-digital converter board and an optimized architecture for a low-noise signal amplifier employing active components for seismic signal detection. To calibrate and assess the performance of the low-cost seismograph, an installation was deployed in a region of high seismic activity in Evgiros, Lefkada Island, Greece. The low-cost system was co-located with a high-resolution 24-bit commercial digitizer, equipped with a broadband (30 s—50 Hz) seismometer. An uninterrupted dataset was collected from the low-cost system over a period of more than two years, encompassing 60 local events with magnitudes ranging from 0.9 to 3.2, epicentral distances from 5.71 km to 23.45 km, and focal depths from 1.83 km to 19.69 km. Preliminary findings demonstrate a significant improvement in the accuracy of earthquake magnitude estimation compared to the initial configuration of the low-cost seismograph. Specifically, the proposed system achieved a mean error of ±0.087 when benchmarked against the data collected by the high-cost commercial seismograph. These results underscore the potential of low-cost seismographs to serve as an effective and financially accessible solution for local seismic monitoring. Full article
Show Figures

Figure 1

23 pages, 11691 KiB  
Article
Cost-Effective Data Acquisition Systems for Advanced Structural Health Monitoring
by Kamer Özdemir and Ahu Kömeç Mutlu
Sensors 2024, 24(13), 4269; https://doi.org/10.3390/s24134269 - 30 Jun 2024
Cited by 6 | Viewed by 5335
Abstract
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first [...] Read more.
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first device, termed CEDAS_acc, integrates the ADXL355 MEMS accelerometer with a RaspberryPi mini-computer, ideal for measuring strong ground motions and assessing structural modal properties during forced vibration tests and structural monitoring of mid-rise buildings. The second device, CEDAS_geo, incorporates the SM24 geophone sensor with a Raspberry Pi, designed for weak ground motion measurements, making it suitable for seismograph networks, seismological research, and early warning systems. Both devices function as acceleration/velocity Data Acquisition Systems (DAS) and standalone data loggers, featuring hardware components such as a single-board mini-computer, sensors, Analog-to-Digital Converters (ADCs), and micro-SD cards housed in protective casings. The CEDAS_acc includes a triaxial MEMS accelerometer with three ADCs, while the CEDAS_geo uses horizontal and vertical geophone elements with an ADC board. To validate these devices, rigorous tests were conducted. Offset Test, conducted by placing the sensor on a leveled flat surface in six orientations, demonstrating the accelerometer’s ability to provide accurate measurements using gravity as a reference; Frequency Response Test, performed at the Gebze Technical University Earthquake and Structure Laboratory (GTU-ESL), comparing the devices’ responses to the GURALP-5TDE reference sensor, with CEDAS_acc evaluated on a shaking table and CEDAS_geo’s performance assessed using ambient vibration records; and Noise Test, executed in a low-noise rural area to determine the intrinsic noise of CEDAS_geo, showing its capability to capture vibrations lower than ambient noise levels. Further field tests were conducted on a 10-story reinforced concrete building in Gaziantep, Turkey, instrumented with 8 CEDAS_acc and 1 CEDAS_geo devices. The building’s response to a magnitude 3.2 earthquake and ambient vibrations was analyzed, comparing results to the GURALP-5TDE reference sensors and demonstrating the devices’ accuracy in capturing peak accelerations and modal frequencies with minimal deviations. The study also introduced the Record Analyzer (RECANA) web application for managing data analysis on CEDAS devices, supporting various data formats, and providing tools for filtering, calibrating, and exporting data. This comprehensive study presents valuable, practical solutions for SHM, enhancing accessibility, reliability, and efficiency in structural and seismic monitoring applications and offering robust alternatives to traditional, costlier systems. Full article
(This article belongs to the Special Issue Structural Health Monitoring Based on Sensing Technology)
Show Figures

Figure 1

15 pages, 4839 KiB  
Article
Seismic Observations in Bucharest Area with a Raspberry Shake Citizen Science Network
by Bogdan Zaharia, Bogdan Grecu, Andreea Tolea and Mircea Radulian
Appl. Sci. 2023, 13(9), 5646; https://doi.org/10.3390/app13095646 - 4 May 2023
Viewed by 3528
Abstract
Technological advancements and the appearance of low-cost Raspberry Shake seismographs have enabled the development of citizen science seismic networks in many areas worldwide. These networks can help reduce seismic risk and increase citizens’ understanding of seismology and earthquakes. Such a network exists in [...] Read more.
Technological advancements and the appearance of low-cost Raspberry Shake seismographs have enabled the development of citizen science seismic networks in many areas worldwide. These networks can help reduce seismic risk and increase citizens’ understanding of seismology and earthquakes. Such a network exists in Bucharest, one of the cities in Europe that are struck and affected by strong Vrancea earthquakes. The paper aims to show that data from such networks can be used in both outreach programs and research studies. There are presented, for the first time, seismic observations collected over two years beginning in the summer of 2020 in the Bucharest area based on the low-cost seismometers from the citizen science Raspberry Shake network. A significant number of earthquakes from the Vrancea region were recorded by the Bucharest Raspberry Shake Seismic Network (BRSSN). Some of them were felt by Bucharest inhabitants. The National Institute for Earth Physics in Magurele (Romania) organizes educational events that promote geosciences among the population and presents the tools at its disposal for a better understanding of earthquakes and their effects, contributing this way to the development of the concept of citizen science. Citizens are the first witnesses to seismic events and the citizen science seismic network provides them with the first direct information about the event via web apps available for any internet-connected device. Their involvement as non-professional participants helps in providing data for scientists via questionnaire forms to improve scientific research for earthquake assessment. Since citizen seismometers are installed in urban areas, an analysis of the ambient seismic noise (ASN) was performed in addition to the analysis of recorded seismic events. The analysis indicates that the level of seismic noise is mainly controlled by human activities. At the same time, for one citizen seismometer installed in a school in Bucharest, the results show patterns of noise variations due to students’ activity. Full article
(This article belongs to the Special Issue Road to Smart City with Geohazard Mitigation and Adaptation Measures)
Show Figures

Figure 1

15 pages, 3131 KiB  
Article
Evaluation of Vibration Detection Using Smartphones in a Two-Story Masonry-Infilled RC Frame Building
by Jae-Do Kang, Eun-Rim Baek and Sung-Ho Park
Buildings 2023, 13(4), 1069; https://doi.org/10.3390/buildings13041069 - 18 Apr 2023
Cited by 3 | Viewed by 2437
Abstract
For measuring the structural health of buildings, high-performance vibration detection devices are used in a structural health monitoring (SHM) system, which consists of a sensor and a data logger. Those devices are seismographs or devices with high-performance sensors which are expensive. Recently, smartphones [...] Read more.
For measuring the structural health of buildings, high-performance vibration detection devices are used in a structural health monitoring (SHM) system, which consists of a sensor and a data logger. Those devices are seismographs or devices with high-performance sensors which are expensive. Recently, smartphones are being used as seismographs to accumulate big data of earthquake wave detection because they have accelerometers of microelectromechanical systems. Since a smartphone has the functions of a detection sensor and a data logger, a low-cost SHM system can be developed by using a low-cost smartphone. In this paper, smartphones were used to confirm the possibility of the development of a low-cost SHM system. To evaluate the vibration detection performance from small displacement and large displacement, smartphones were installed in a specimen of a large shaking table test. The specimen is a scale model of a two-story non-reinforced masonry-filled reinforce concrete (RC) frame building. The natural period and interstory drift ratio were used as the evaluation criteria. The natural period estimated by the smartphone data agreed with that found by the piezoelectric accelerometer data. For estimating the building deformation, which is related to building stability, the measurement performance for large deformation using smartphones was evaluated. The smartphones have 90% or higher accuracies for the estimation of the maximum acceleration and displacement. Full article
Show Figures

Figure 1

22 pages, 8626 KiB  
Article
Peculiarities of the HVSR Method Application to Seismic Records Obtained by Ocean-Bottom Seismographs in the Arctic
by Artem A. Krylov, Mikhail E. Kulikov, Sergey A. Kovachev, Igor P. Medvedev, Leopold I. Lobkovsky and Igor P. Semiletov
Appl. Sci. 2022, 12(19), 9576; https://doi.org/10.3390/app12199576 - 23 Sep 2022
Cited by 9 | Viewed by 3376
Abstract
The application of the horizontal-to-vertical spectral ratio (HVSR) modeling and inversion techniques is becoming more and more widespread for assessing the seismic response and velocity model of soil deposits due to their effectiveness, environmental friendliness, relative simplicity and low cost. Nevertheless, a number [...] Read more.
The application of the horizontal-to-vertical spectral ratio (HVSR) modeling and inversion techniques is becoming more and more widespread for assessing the seismic response and velocity model of soil deposits due to their effectiveness, environmental friendliness, relative simplicity and low cost. Nevertheless, a number of issues related to the use of these techniques in difficult natural conditions, such as in the shelf areas of the Arctic seas, where the critical structures are also designed, remain poorly understood. In this paper, we describe the features of applying the HVSR modeling and inversion techniques to seismic records obtained by ocean-bottom seismographs (OBS) on the outer shelf of the Laptev Sea. This region is characterized by high seismotectonic activity, as well as sparse submarine permafrost distribution and the massive release of bubble methane from bottom sediments. The seismic stations were installed for one year and their period of operation included periods of time when the sea was covered with ice and when the sea was ice-free. The results of processing of the recorded ambient seismic noise, as well as the wave recorder data and ERA5 and EUMETSAT reanalysis data, showed a strong dependence of seafloor seismic noise on the presence of sea ice cover, as well as weather conditions, wind speed in particular. Wind-generated gravity waves, as well as infragravity waves, are responsible for the increase in the level of ambient seismic noise. The high-frequency range of 5 Hz and above is strongly affected by the coupling effect, which in turn also depends on wind-generated gravity waves and infragravity waves. The described seafloor seismic noise features must be taken into account during HVSR modeling and interpretation. The obtained HVSR curves plotted from the records of one of the OBSs revealed a resonant peak corresponding to 3 Hz, while the curves plotted from the records of another OBS did not show clear resonance peaks in the representative frequency range. Since both OBSs were located in the area of sparse distribution of submarine permafrost, the presence of a resonance peak may be an indicator of the presence of a contrasting boundary of the upper permafrost surface under the location of the OBS. The absence of a clear resonant peak in the HVSR curve may indicate that the permafrost boundary is either absent at this site or its depth is beyond the values corresponding to representative seismic sensor frequency band. Thus, HVSR modeling and inversion techniques can be effective for studying the position of submarine permafrost. Full article
(This article belongs to the Special Issue Earthquake-Resistant Design of Geotechnical Structure)
Show Figures

Figure 1

24 pages, 8963 KiB  
Article
Raspberry Shake-Based Rapid Structural Identification of Existing Buildings Subject to Earthquake Ground Motion: The Case Study of Bucharest
by Ali Güney Özcebe, Alexandru Tiganescu, Ekin Ozer, Caterina Negulescu, Juan Jose Galiana-Merino, Enrico Tubaldi, Dragos Toma-Danila, Sergio Molina, Alireza Kharazian, Francesca Bozzoni, Barbara Borzi and Stefan Florin Balan
Sensors 2022, 22(13), 4787; https://doi.org/10.3390/s22134787 - 24 Jun 2022
Cited by 13 | Viewed by 5684
Abstract
The Internet of things concept empowered by low-cost sensor technologies and headless computers has upscaled the applicability of vibration monitoring systems in recent years. Raspberry Shake devices are among those systems, constituting a crowdsourcing framework and forming a worldwide seismic network of over [...] Read more.
The Internet of things concept empowered by low-cost sensor technologies and headless computers has upscaled the applicability of vibration monitoring systems in recent years. Raspberry Shake devices are among those systems, constituting a crowdsourcing framework and forming a worldwide seismic network of over a thousand nodes. While Raspberry Shake devices have been proven to densify seismograph arrays efficiently, their potential for structural health monitoring (SHM) is still unknown and is open to discovery. This paper presents recent findings from existing buildings located in Bucharest (Romania) equipped with Raspberry Shake 4D (RS4D) devices, whose signal recorded under multiple seismic events has been analyzed using different modal identification algorithms. The obtained results show that RS4D modules can capture the building vibration behavior despite the short-duration and low-amplitude excitation sources. Based on 15 RS4D device readings from five different multistorey buildings, the results do not indicate damage in terms of modal frequency decay. The findings of this research propose a baseline for future seismic events that can track the changes in vibration characteristics as a consequence of future strong earthquakes. In summary, this research presents multi-device, multi-testbed, and multi-algorithm evidence on the feasibility of RS4D modules as SHM instruments, which are yet to be explored in earthquake engineering. Full article
(This article belongs to the Special Issue Automatic Detection of Seismic Signals)
Show Figures

Figure 1

16 pages, 7115 KiB  
Article
A New Cable-Less Seismograph with Functions of Real-Time Data Transmitting and High-Precision Differential Self-Positioning
by Kang Liu, Qingyu You, Juan Wang, Xiqiang Xu, Pengcheng Shi, Kaoshan Dai, Zhenhua Huang, Shiquan Wang, Yuanfeng Shi and Zhibin Ding
Sensors 2020, 20(14), 4015; https://doi.org/10.3390/s20144015 - 19 Jul 2020
Cited by 5 | Viewed by 3879
Abstract
This study developed a new cable-less seismograph system, which can transmit seismic data in real-time and automatically perform high-precision differential self-positioning. Combining the ZigBee technology with the high-precision differential positioning module, this new seismograph system utilized the wireless personal area network (WPAN) and [...] Read more.
This study developed a new cable-less seismograph system, which can transmit seismic data in real-time and automatically perform high-precision differential self-positioning. Combining the ZigBee technology with the high-precision differential positioning module, this new seismograph system utilized the wireless personal area network (WPAN) and real-time kinematic (RTK) technologies to improve its on-site performances and to make the field quality control (QC) and self-positioning possible. With the advantages of low-cost, good scalability, and good compatibility, the proposed new cable-less seismograph system can improve the field working efficiency and data processing capability. It has potential applications in noise seismology and mobile seismic monitoring. Full article
Show Figures

Figure 1

11 pages, 1074 KiB  
Article
Performance Evaluation of Low-Cost Seismic Sensors for Dense Earthquake Early Warning: 2018–2019 Field Testing in Southwest China
by Jihua Fu, Zhitao Li, Hao Meng, Jianjun Wang and Xinjian Shan
Sensors 2019, 19(9), 1999; https://doi.org/10.3390/s19091999 - 29 Apr 2019
Cited by 23 | Viewed by 5396
Abstract
Earthquake Early Warning (EEW) was proved to be a potential means of disaster reduction. Unfortunately, the performance of the EEW system is largely determined by the density of EEW network. How to reduce the cost of sensors has become an urgent problem for [...] Read more.
Earthquake Early Warning (EEW) was proved to be a potential means of disaster reduction. Unfortunately, the performance of the EEW system is largely determined by the density of EEW network. How to reduce the cost of sensors has become an urgent problem for building a dense EEW. A low-cost seismic sensor integrated with a Class C MEMS accelerometer was proposed in this paper. Based on minimal structure design, the sensor’s reliability was enhanced, while the costs were cut down as well. To fully reveal the performance, ten of the seismic sensors were installed and tested in Sichuan Province, southwest of China from May 2018 to February 2019. The seismic records obtained by the MNSMSs were compared with those by the traditional strong motion seismographs. The records obtained by the MNSMSs have good consistency with the data obtained by the Etnas. The MNSMSs can obtain clear seismic phases that are enough to trigger earthquake detections for EEW. By noise analysis, different channels of the same sensor and different sensors have good consistency. The tested dynamic range (over 87 dB) and useful resolution (over 14.5 bits) are completely in conformity with the designed parameters. Through real field testing, small earthquakes (M 3.1–3.6) can be detected by all three components E-W, N-S, and U-D within 50 km. In all, the low-cost seismic sensor proposed as a high-performance Class C MEMS sensor can meet the needs of dense EEW in terms of noise, dynamic range, useful resolution, reliability, and detecting capabilities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop