Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = loss-free resistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1486 KB  
Article
Optically Controlled Bias-Free Frequency Reconfigurable Antenna
by Karam Mudhafar Younus, Khalil Sayidmarie, Kamel Sultan and Amin Abbosh
Sensors 2025, 25(19), 5951; https://doi.org/10.3390/s25195951 - 24 Sep 2025
Viewed by 3149
Abstract
A bias-free antenna tuning technique that eliminates conventional DC biasing networks is presented. The tuning mechanism is based on a Light-Dependent Resistor (LDR) embedded within the antenna structure. Optical illumination is used to modulate the LDR’s resistance, thereby altering the antenna’s effective electrical [...] Read more.
A bias-free antenna tuning technique that eliminates conventional DC biasing networks is presented. The tuning mechanism is based on a Light-Dependent Resistor (LDR) embedded within the antenna structure. Optical illumination is used to modulate the LDR’s resistance, thereby altering the antenna’s effective electrical length and enabling tuning of its resonant frequency and operating bands. By removing the need for bias lines, RF chokes, blocking capacitors, and control circuitry, the proposed approach minimizes parasitic effects, losses, biasing energy, and routing complexity. This makes it particularly suitable for compact and energy-constrained platforms, such as Internet of Things (IoT) devices. As proof of concept, an LDR is integrated into a ring monopole antenna, achieving tri-band operation in both high and low resistance states. In the high-resistance (OFF) state, the fabricated prototype operates across 2.1–3.1 GHz, 3.5–4 GHz, and 5–7 GHz. In the low-resistance (ON) state, the LDR bridges the two arcs of the monopole, extending the current path and shifting the lowest band to 1.36–2.35 GHz, with only minor changes to the mid and upper bands. The antenna maintains linear polarization across all bands and switching states, with measured gains reaching up to 5.3 dBi. Owing to its compact, bias-free, and low-cost architecture, the proposed design is well-suited for integration into portable wireless devices, low-power IoT nodes, and rapidly deployable communications systems where electrical biasing is impractical. Full article
(This article belongs to the Special Issue Microwave Components in Sensing Design and Signal Processing)
Show Figures

Figure 1

17 pages, 9303 KB  
Article
Continuous Wave Mode Test of Conduction-Cooled Nb3Sn Radio Frequency Superconducting Cavities at Peking University
by Manqian Ren, Lin Lin, Jiankui Hao, Gai Wang, Ziyu Wang, Deyang Wang, Haoyu Shen, Shengwen Quan, Fang Wang, Liwen Feng, Fei Jiao, Feng Zhu, Kun Zhu, Xueqing Yan and Senlin Huang
Appl. Sci. 2024, 14(14), 6350; https://doi.org/10.3390/app14146350 - 21 Jul 2024
Cited by 3 | Viewed by 2197
Abstract
A liquid helium-free cryostat for radio frequency (RF) test of the superconducting cavity is designed and constructed. Gifford-Mcmahon (G-M) cryocoolers are used to provide cooling capacity, and the heat leakage at 4 K is less than 0.02 W. Vertical and horizontal tests of [...] Read more.
A liquid helium-free cryostat for radio frequency (RF) test of the superconducting cavity is designed and constructed. Gifford-Mcmahon (G-M) cryocoolers are used to provide cooling capacity, and the heat leakage at 4 K is less than 0.02 W. Vertical and horizontal tests of two Nb3Sn cavities are carried out in the cryostat with different surface treatments outside the cavities. Both of the cavities achieve stable continuous wave (CW) operation. A novel treatment, which cold-sprayed a 3.5 mm thick Cu layer onto the outside of the cavity, enables the maintenance of an average temperature of 5.5 K in the cavity at a RF loss of 10 W, implying that the thermal stability and uniformity of the cavity has been significantly improved. Through the synergistic control of four metal film resistors, a cooling rate of 0.06 K/min near 18 K is realized, and the cavity temperature gradient is reduced to 0.17 K/m, which effectively improves the RF performance of the cavity. The maximum Eacc of the cavity reaches 3.42 MV/m, and the Q0 is 1.1 × 109. An electromagnetic–thermal coupling simulation model for the superconducting cavity is established and is in good agreement with the experimental results. The simulation results show that the cavity with a Cu-spraying treatment and the thermal links of 5N Al can satisfy the Eacc of 10 MV/m under conduction cooling. Full article
Show Figures

Figure 1

13 pages, 6603 KB  
Article
Surface-Mount Zero-Ohm Jumper Resistor Characterization in High-Speed Controlled Impedance Transmission Lines
by Aleksandr Vasjanov and Vaidotas Barzdenas
Sensors 2023, 23(9), 4472; https://doi.org/10.3390/s23094472 - 4 May 2023
Cited by 1 | Viewed by 5340
Abstract
Zero-ohm resistors, also known as jumpers, are commonly used in early radio frequency (RF) prototypes as they can help engineers identify the most optimal engineering solution for their system or create application-specific hardware configurations in products. One of the key considerations when using [...] Read more.
Zero-ohm resistors, also known as jumpers, are commonly used in early radio frequency (RF) prototypes as they can help engineers identify the most optimal engineering solution for their system or create application-specific hardware configurations in products. One of the key considerations when using zero-ohm jumpers in RF circuits is the potential for signal loss and interference. Every circuit connection creates a small amount of resistance and impedance, eventually adding up over long distances or in complex circuits. This paper proposes a quantitative characterization summary of standard 0201-, 0402-, 0603-, and 0805-size surface-mount package jumpers, as well as lead-free and lead solder wires, in high-frequency applications by means of time domain reflectometry (TDR) and S-parameter measurements. The typical offset from the target 50 Ω impedance was measured to be around 3 Ω, or 5.8% relative to the measured reference value. According to S-parameter measurement results, no visible impact on attenuation was spotted up to 5 GHz compared to the reference S21 curve. Full article
(This article belongs to the Special Issue MIMO Technologies in Sensors and Wireless Communication Applications)
Show Figures

Figure 1

19 pages, 5417 KB  
Article
Maximum Electrical Power Extraction from Sources by Load Matching
by Sigmund Singer, Shlomi Efrati, Meir Alon and Doron Shmilovitz
Energies 2021, 14(23), 8025; https://doi.org/10.3390/en14238025 - 1 Dec 2021
Cited by 3 | Viewed by 4071
Abstract
This paper describes the matching of various loads to sources (including nonlinear ones). The purpose of matching is to extract the maximum available power from the source. This has particular importance for renewable sources and energy-harvesting devices, in which unused energy is just [...] Read more.
This paper describes the matching of various loads to sources (including nonlinear ones). The purpose of matching is to extract the maximum available power from the source. This has particular importance for renewable sources and energy-harvesting devices, in which unused energy is just wasted. The main innovations in this paper include (and followed by examples) simplified calculation of the matching parameter for a controllable load and matching by means of a family of power-conservative two-port networks, denoted POPI (Pin = Pout), such as transformers, gyrators, loss-free resistors (LFRs) and series LFRs (SLFRs). An additional innovation described in this paper is a new, simplified model of an HF power amplifier based on the series LFR concept. This model predicts that the efficiency of the HF power amplifier operated under the matched-mode condition can significantly exceed the 50% efficiency limit that is predicted by the conventional model. As HF power amplifiers drive antennas in transmission and some wireless power transfer (which uses radiative techniques) systems, it is clear that the operation of such systems in the matched-mode condition is not restricted to a 50% efficiency limit. Full article
Show Figures

Figure 1

24 pages, 14847 KB  
Article
Analysis and Design of Self-Oscillating Resonant Converters with Loss-Free Resistor Characteristics
by Ricardo Bonache-Samaniego, Carlos Olalla, Hugo Valderrama-Blavi and Luis Martínez-Salamero
Energies 2020, 13(14), 3743; https://doi.org/10.3390/en13143743 - 20 Jul 2020
Cited by 3 | Viewed by 3518
Abstract
A general approach for the analysis and design of self-oscillating resonant converters is presented in this paper, for a particular class of circuits in which the change of input voltage polarity is caused by the zero-crossings of the input inductor current. The key [...] Read more.
A general approach for the analysis and design of self-oscillating resonant converters is presented in this paper, for a particular class of circuits in which the change of input voltage polarity is caused by the zero-crossings of the input inductor current. The key features of the method are an analytical description in the time-domain of a spiral that eventually converges into an ellipse, and a frequency–domain analysis that explains the behavior of the ellipse as a limit cycle. On a theoretical basis, this class of circuits behaves as loss-free resistors (LFR) because in steady-state the input inductor current is in phase with the first harmonic of the input voltage. The proposed analytical procedure predicts accurately the amplitude and frequency of the limit cycle and justifies the stability of its generation. This accuracy is reflected in the close agreement between the theoretical expressions and the corresponding simulated and measured waveforms. Third and fourth order resonant converters are designed following simple guidelines derived from the theoretical analysis. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

9 pages, 2476 KB  
Article
Novel Low-Cost Power Divider for 5.8 GHz
by Tso-Jung Chang, Krishna Pande and Heng-Tung Hsu
Electronics 2020, 9(4), 699; https://doi.org/10.3390/electronics9040699 - 24 Apr 2020
Viewed by 3712
Abstract
This paper presents a new capacitive lump-free structure for power dividers using a printed-circuit board, while maintaining size reduction and physical isolation. The conventional lumped capacitors approach has self-resonant problem and cause worse S 22 and isolation at high frequencies. To overcome such [...] Read more.
This paper presents a new capacitive lump-free structure for power dividers using a printed-circuit board, while maintaining size reduction and physical isolation. The conventional lumped capacitors approach has self-resonant problem and cause worse S 22 and isolation at high frequencies. To overcome such technical issues, the coupled-line structures were introduced in the isolation network. After optimizing the distance between output ports and position of the isolation network, tuning the characteristic impedance and electrical length of transmission lines can decide the value of the lump resistor. The first example was designed at 1 GHz, and the resistor in the isolation network was 330 ohm, having 0.2-dB insertion loss and 19% total bandwidth, while maintaining 80-degree distance between split ports and 180-degree total length, providing 21% to 67% size reduction. The second example was designed at 5.8 GHz, which was five times greater than in past research, using an RO4003C substrate while maintaining a 0.24-dB insertion loss, 17% total bandwidth, and 0.06 dB amplitude imbalance, which was only 0.01 dB more than in recent research. Such superior performance is mainly attributed to the coupled transmission lines in the isolation network featuring a capacitive lump-free isolation network. Our data indicate that amplitude imbalance, bandwidth, and miniaturization are superior to any published data. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

24 pages, 9159 KB  
Article
Analysis of Sliding-Mode Controlled Impedance Matching Circuits for Inductive Harvesting Devices
by Juan A. Garriga-Castillo, Hugo Valderrama-Blavi, José A. Barrado-Rodrigo and Àngel Cid-Pastor
Energies 2019, 12(20), 3858; https://doi.org/10.3390/en12203858 - 12 Oct 2019
Cited by 2 | Viewed by 2960
Abstract
A sea-wave energy harvesting, articulated device is presented in this work. This hand-made, wooden device is made combining the coil windings of an array of three single transducers. Taking advantage of the sea waves sway, a linear oscillating motion is produced in each [...] Read more.
A sea-wave energy harvesting, articulated device is presented in this work. This hand-made, wooden device is made combining the coil windings of an array of three single transducers. Taking advantage of the sea waves sway, a linear oscillating motion is produced in each transducer generating an electric pulse. Magnetic fundamentals are used to deduce the electrical model of a single transducer, a solenoid-magnet device, and after the model of the whole harvesting array. The energy obtained is stored in a battery and is used to supply a stand-alone system pay-load, for instance a telecom relay or weather station. To maximize the harvested energy, an impedance matching circuit between the generator array and the system battery is required. Two dc-to-dc converters, a buck-boost hybrid cell and a Sepic converter are proposed as impedance adaptors. To achieve this purpose, sliding mode control laws are introduced to impose a loss free resistor behavior to the converters. Although some converters operating at discontinuous conduction mode, like the buck-boost converter, can exhibit also this loss free resistor behavior, they usually require a small input voltage variation range. By means of sliding mode control the loss free resistor behavior can be assured for any range of input voltage variation. After the theoretical analysis, several simulation and experimental results to compare both converters performance are given. Full article
(This article belongs to the Special Issue Sliding Mode Control of Power Converters in Renewable Energy Systems)
Show Figures

Figure 1

20 pages, 11668 KB  
Article
A Loss-Free Resistor-Based Versatile Ballast for Discharge Lamps
by Hugo Valderrama-Blavi, Antonio Leon-Masich, Carlos Olalla and Àngel Cid-Pastor
Energies 2019, 12(7), 1403; https://doi.org/10.3390/en12071403 - 11 Apr 2019
Cited by 2 | Viewed by 4724
Abstract
This paper presents a versatile ballast for discharge lamps, whose operation is based on the notion of a loss-free resistor (LFR). The ballast consists of two stages: (1) a boost converter operating in continuous conduction mode (CCM) and exhibiting an LFR behavior imposed [...] Read more.
This paper presents a versatile ballast for discharge lamps, whose operation is based on the notion of a loss-free resistor (LFR). The ballast consists of two stages: (1) a boost converter operating in continuous conduction mode (CCM) and exhibiting an LFR behavior imposed by sliding-mode control; and (2) a resonant inverter supplying the discharge lamp at high frequencies. Thanks to this mode of operation, the power transferred to the lamp is regulated by the LFR input resistance, allowing successful ignition, warm-up, nominal, and dimming operation of a range of discharge lamps, with no need for complex regulation schemes based on lamp models. The versatility of the ballast has been experimentally proven for both conventional and electrodeless discharge lamps. Tests include induction electrodeless fluorescent (IEFL), high-pressure sodium (HPS) vapor, and metal-halide lamps. Full article
(This article belongs to the Special Issue Sliding Mode Control of Power Converters in Renewable Energy Systems)
Show Figures

Figure 1

14 pages, 3423 KB  
Article
Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses
by Miguel Ángel López Zavala, Pamela Renée Torres Delenne and Omar Israel González Peña
Energies 2018, 11(9), 2309; https://doi.org/10.3390/en11092309 - 2 Sep 2018
Cited by 12 | Viewed by 6367
Abstract
In this study, biodegradation performance and power generation in MFCs were improved. Domestic wastewater was biodegraded in a dual-chamber MFC system equipped with a DupontTM Nafion® 117 proton exchange membrane, graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) in both [...] Read more.
In this study, biodegradation performance and power generation in MFCs were improved. Domestic wastewater was biodegraded in a dual-chamber MFC system equipped with a DupontTM Nafion® 117 proton exchange membrane, graphite electrodes (8.0 cm × 2.5 cm × 0.2 cm) in both chambers and an external electric circuit with a 100 Ω resistor. Experiments were conducted using an anaerobic inoculum that was prepared onsite by acclimating mixed liquor from municipal wastewater. Aqueous hydrochloric acid (0.1 M HCl, pH 1.82) was used as the electrolyte in the cathode chamber. Free-oxygen conditions were promoted in both chambers by means of a vacuum (77.3 kPa). Low pH (< 5) and mixing conditions were maintained in the anode chamber and all the tests were carried out at 25 ± 1 °C. These conditions enhanced the hydrolysis and acidogenesis, inhibited the methanogenesis and reduced the internal losses. All of them together contributed to improve the treatment performance and power generation of the MFCs. Results of batch tests show COD reductions of up to 95%, voltages peaks of 0.954 V, maximum power densities on the order of 2.1 W·m−2 and 36.9 W·m3, and energy generation peaks of 99.4 J·mg−1 COD removed. These values are greater than those reported in the MFCs’ literature for municipal wastewater (26 mW·m−2–146 mW·m−2), industrial wastewater (419 mW·m−2) and culture medium solutions (1.17 W·m−2), and similar to those of glucose (3.6 W·m−2). Thus, these results can contribute to further enhancing the energy generated in MFCs and moving forward to make the MFCs more ready for practical applications of bioenergy production. Full article
(This article belongs to the Special Issue Microbial Electrochemical Systems)
Show Figures

Figure 1

Back to TopTop