Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = longhorn beetles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 256 KiB  
Article
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
by Rui Zhang, Jian-Ming Shi, Yi-Bei Jiang, Hui-Quan Sun, Dan-Dan Cao, Hui-Ling Hao and Jian-Rong Wei
Insects 2025, 16(8), 781; https://doi.org/10.3390/insects16080781 - 30 Jul 2025
Viewed by 272
Abstract
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger [...] Read more.
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value). Full article
(This article belongs to the Section Insect Pest and Vector Management)
15 pages, 3952 KiB  
Article
Prediction of the Potentially Suitable Area for Anoplophora glabripennis (Coleoptera: Cerambycidae) in China Based on MaxEnt
by Kaiwen Tan, Mingwang Zhou, Hongjiang Hu, Ning Dong and Cheng Tang
Forests 2025, 16(8), 1239; https://doi.org/10.3390/f16081239 - 28 Jul 2025
Viewed by 193
Abstract
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area [...] Read more.
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area can help control the harm caused by ALB more effectively. In this study, we applied the maximum entropy model to predict the suitable area for ALB. Moreover, the prediction results revealed that ALB is distributed mainly in northern, eastern, central, southern, southwestern, and northwestern China, and its high-fit areas are located mainly in northern, northwestern, and southwestern China. The average minimum temperature in September, precipitation seasonality (coefficient of variation), the average maximum temperature in April, and average precipitation in October had the greatest influence on ALB. The greatest distribution probabilities were observed at the September average minimum temperature of 16 °C, the precipitation seasonality (coefficient of variation) of 130%, the April average maximum temperature of 14 °C, and the October average precipitation of 30 mm. Furthermore, with climate change, the non-suitability area for the ALB will show a decreasing trend in the future. The intermediate suitability area will increase, while the low and high suitability areas will first increase and then decrease. Taken together, the potentially suitable areas for ALB in China include the Beijing–Tianjin–Hebei region and the Shanghai region in North China and East China, providing a deeper understanding of ALB control. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

9 pages, 915 KiB  
Article
Synopsis of the Genus Trichorondonia Breuning, 1965 with Description of a New Species from China (Coleoptera: Cerambycidae)
by Ruigang Yang, Jianhua Huang and Guanglin Xie
Insects 2025, 16(7), 743; https://doi.org/10.3390/insects16070743 - 21 Jul 2025
Viewed by 311
Abstract
This paper provides a brief review of the genus Trichorondonia Breuning, 1965. A new species, Trichorondonia wenkaii sp. nov. (文凯毛郎氏天牛), is described and illustrated. Trichorondonia kabateki Viktora, 2024 is newly recorded in Hubei province, with the first description of the male. Additionally, photographs [...] Read more.
This paper provides a brief review of the genus Trichorondonia Breuning, 1965. A new species, Trichorondonia wenkaii sp. nov. (文凯毛郎氏天牛), is described and illustrated. Trichorondonia kabateki Viktora, 2024 is newly recorded in Hubei province, with the first description of the male. Additionally, photographs of the holotypes of three previously described species are presented. A key to the four species is given. The new species differs from T. pilosipes and T. hybolasioides in having elytra with rounded lateral apical angles and a vertex with blackish-brown pubescence medially behind the eyes. The new species can also be easily distinguished from T. kabateki by the antennae being ventrally fringed with sparse hairs only on segments 1–8, the greyish-yellow pubescence on the pronotum being unevenly distributed and particularly sparse in the posterior half, the elytra having rather thin greyish-yellow pubescence and hardly visible greyish-white pubescence, elongated blackish-brown spots on the elytral longitudinal carinae, and a small tuft of black setae at the centre of the elytral base where there is no obvious tubercle. The type specimen of the new species was collected in Dianping village, Xinhua town, Leye county, Guangxi Zhuang Autonomous Region of China, and deposited at Insect Collection, College of Agriculture, Yangtze University, Jingzhou, Hubei, China (ICYZU). Full article
Show Figures

Figure 1

10 pages, 692 KiB  
Article
Shape as a Key to Taxonomy: Morphometric Analysis of Tetropium Species (Coleoptera: Cerambycidae)
by Allan H. Smith-Pardo, Steven W. Lingafelter, David Laroze, Alejandro Piñeiro-Gonzalez and Hugo A. Benítez
Insects 2025, 16(4), 386; https://doi.org/10.3390/insects16040386 - 4 Apr 2025
Viewed by 833
Abstract
The study of shape by the use of geometric morphometrics has been an important tool for addressing taxonomic challenges in complex groups like the genus Tetropium Kirby, 1837 (Coleoptera, Cerambycidae). This insect genus includes 28 species, 8 of which are found in North [...] Read more.
The study of shape by the use of geometric morphometrics has been an important tool for addressing taxonomic challenges in complex groups like the genus Tetropium Kirby, 1837 (Coleoptera, Cerambycidae). This insect genus includes 28 species, 8 of which are found in North America, with the invasive T. fuscum (Fabricius) posing a significant quarantine risk as a pest of coniferous trees. The present study evaluated the use of geometric morphometrics to analyze the pronotum shape in females of nine species of the genus, showing the effectiveness of this tool in distinguishing between species. Even if some overlaps were found between some species, this research highlights the potential of GM in developing pest monitoring, quarantine managements, and integrated pest management programs. Our findings suggest that the use of a comprehensive database of landmarks, encompassing broader geographic and ecological diversity, could further improve species identification at ports of entry and facilitate trade. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

23 pages, 12122 KiB  
Article
Innovative Application of Medicinal Insects: Employing UHPLC-MS, Bioinformatics, In Silico Studies and In Vitro Experiments to Elucidate the Multi-Target Hemostatic Mechanism of Glenea cantor (Coleoptera: Cerambycidae) Charcoal-Based Medicine
by Bangyu Zhong, Wen Zhang, Liangshan Ming, Qimeng Fan, Lei Zhang, Hongyu Lai, Genwang Huang, Hongning Liu and Zishu Dong
Pharmaceuticals 2025, 18(4), 479; https://doi.org/10.3390/ph18040479 - 27 Mar 2025
Viewed by 611
Abstract
Background: Longhorn beetles, a widely recognized group of Chinese traditional medicinal insects, are characterized by their notable hemostatic properties. However, the comprehensive understanding of their medicinal potential has been hindered by the limitations of current research methodologies. Methods: This study focuses on the [...] Read more.
Background: Longhorn beetles, a widely recognized group of Chinese traditional medicinal insects, are characterized by their notable hemostatic properties. However, the comprehensive understanding of their medicinal potential has been hindered by the limitations of current research methodologies. Methods: This study focuses on the species Glenea cantor (Fabricius), which can produce several generations per year, and introduces a novel method using microwave carbonization techniques. By employing an in vitro coagulation test, UHPLC-MS, network pharmacology, molecular docking, and molecular dynamics simulation, the hemostatic efficacy and mechanism of action of Glenea cantor charcoal medicine (GC-CM) were thoroughly studied. Results: In vitro coagulation tests showed that GC-CM significantly reduced the activated partial thromboplastin time (APTT) and prothrombin time (PT), indicating its ability to enhance the coagulation cascade and preliminarily confirming its hemostatic efficacy (p < 0.01 vs. blank control group). The analysis revealed that GC-CM comprises 453 components, including 137 bioactive components with high human utilization. After predictions via databases such as SwissTargetPrediction and deduplication, 215 targets linked to hemostatic specificity were identified. These targets regulate signaling pathways such as platelet activation, complement and coagulation cascades, and cGMP-PKG. Molecular docking demonstrated strong affinities between key targets such as SRC and PIK3R1 and compounds such as 2′,6′-dihydroxy 4′-methoxydihydrochalcone, and 1-monolinoleoyl-rac-glycerol (binding energy < −5 kcal/mol). Molecular dynamics simulations show good binding capacity between core components and targets Conclusions: The aim of this study was to elucidate the material basis and mechanism of the hemostatic efficacy of GC-CM, offering a model for exploring other insect-based medicinal resources. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 7250 KiB  
Article
Interspecific Mating Is Trivial and Asymmetrical Between Two Destructive Anoplophora Beetles
by Tian Xu, Wenbo Wang, Xiaoyuan Chen, Jing Ma, Ruixu Chen, Xue Sun, Yang Yang, Guohao Li, Yadi Deng and Dejun Hao
Insects 2025, 16(4), 352; https://doi.org/10.3390/insects16040352 - 27 Mar 2025
Viewed by 674
Abstract
The Asian longhorn beetle (ALB), Anoplophora glabripennis, and citrus longhorn beetle (CLB), Anoplophora chinensis, are two destructive invasive wood-boring pests, with high similarities in morphology, geographical distribution, host range, life cycle, adult behaviors and male-produced pheromone, implying a potential existence of [...] Read more.
The Asian longhorn beetle (ALB), Anoplophora glabripennis, and citrus longhorn beetle (CLB), Anoplophora chinensis, are two destructive invasive wood-boring pests, with high similarities in morphology, geographical distribution, host range, life cycle, adult behaviors and male-produced pheromone, implying a potential existence of interspecific interactions. Matings have been found to occur across females and males of the two species when manually paired in confined spaces. However, interspecific mating and its regulating factors are unclear between sympatric populations on hosts. Herein, by observing mountings and tracking the beetles that freely coexisted on host branches in cages, we found that the majority of mountings appeared within species; however, interspecific mountings occasionally occurred between male CLBs and female ALBs. The CLB was more active than the ALB at night. It seems that males actively searched for female ALBs, while the inverse was the case with CLBs. The main release periods of shared pheromone components overlapped between the two species, while compound ratios had significant differences. Our results unveil a trivial and asymmetrical interspecific mating between ALBs and CLBs, implying a risk of co-outbreaks of the two species in either native or invaded areas. Full article
Show Figures

Graphical abstract

14 pages, 1972 KiB  
Article
Methyl Jasmonate Enhances the Resistance of Populus alba var. pyramidalis Against Anoplophora glabripennis (Coleoptera: Cerambycidae)
by Pengpeng Shao, Jiayu Luo, Rui Zhang, Jianfeng Liu, Dandan Cao, Zhi Su and Jianrong Wei
Insects 2025, 16(2), 153; https://doi.org/10.3390/insects16020153 - 3 Feb 2025
Cited by 2 | Viewed by 838
Abstract
Populus alba var. pyramidalis (PaP) is a very important and main planted tree species in northwestern China. However, it has been threatened by Asian longhorned beetle Anoplophora glabripennis (ALB) infestation. A feasible way to protect PaP is by improving its own insect resistance [...] Read more.
Populus alba var. pyramidalis (PaP) is a very important and main planted tree species in northwestern China. However, it has been threatened by Asian longhorned beetle Anoplophora glabripennis (ALB) infestation. A feasible way to protect PaP is by improving its own insect resistance ability. In order to achieve this goal, we first checked whether ALB could induce the defense system of PaP by comparing the ALB-attracted volatiles of PaP before and after ALB infestation through the collection and identification of volatiles by gas chromatography–mass spectrometry (GC-MS). We found that attractant volatiles (Z)-3-hexenol (Z3H) and (Z)-3-hexen-1-yl acetate (Z3HA) decreased by 72.99% and 74.53% after ALB infestation, respectively. Then, the contents of the plant hormones salicylic acid (SA), jasmonic acid (JA), methyl salicylate (MeSA), and methyl jasmonate (MeJA) and the defense substances hydrogen peroxide (H2O2), peroxidase (POD), and total superoxide dismutase (T-SOD) in the phloem of PaP were determined before and after ALB infestation by high-performance liquid chromatography–mass spectrometry (HPLC-MS) and a manufacturer’s kit, respectively. The results showed that the quantities of SA decreased, but JA and MeJA increased by 2.1 times and 3.02 times, respectively, and the increase in H2O2 and POD was also significant. Therefore, we hypothesized that MeJA might be closely related to the induced ALB resistance of PaP. Further exogenous spraying of MeJA on PaP showed that the feeding and oviposition of ALB adults were significantly decreased on PaP, confirming that MeJA could improve PaP’s resistance against ALB. The concentration effect showed that 10−4 mol/L of MeJA treatment induced the strongest results. Our results clearly demonstrated the response of a poplar species to a wood borer infestation and provide an alternative method to protect PaP in the future. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 3865 KiB  
Article
Determination of Larval Instars of Dastarcus helophoroides (Coleoptera: Bothrideridae) Using Head Capsule Width Frequency Distribution
by Tayyab Shaheen, Jiali Guo, Yun Wang, Jiaojiao Zhou, Guanghui Tang and Zhengqing Zhang
Insects 2024, 15(12), 1013; https://doi.org/10.3390/insects15121013 - 20 Dec 2024
Viewed by 1156
Abstract
Long-horned beetles are among the major insect pests that can cause significant economic and ecological damage globally. The control of long-horned beetles is crucial to sustain the forest ecosystem. Dastarcus helophoroides, an economically important ectoparasitoid of long-horned beetles, is widely utilized in [...] Read more.
Long-horned beetles are among the major insect pests that can cause significant economic and ecological damage globally. The control of long-horned beetles is crucial to sustain the forest ecosystem. Dastarcus helophoroides, an economically important ectoparasitoid of long-horned beetles, is widely utilized in biological control strategies. However, the number of larval instars in D. helophoroides remains underexplored. Larval instar determination is crucial for constructing growth prediction models and ecological life tables for insect populations. In this study, we analyzed the frequency distribution of head capsule widths utilizing a visual approach, followed by a non-linear least squares (NLLS) estimation, and found that D. helophoroides undergo four larval instars before entering the pupal stage. The theoretical and observed data for each larval instar yielded identical mean Brooks–Dyar’s ratios (1.80). Re-correlation of the number of instars with their respective mean head capsule widths using linear regression (R²) verified that no larval instar was missed. The Crosby’s growth ratio (1% and 2%) indicates a very low likelihood of misclassifying an instar into an adjacent one. Given that the accurate determination of larval instars is crucial for developing effective control programs and predicting future population levels, our findings provide valuable insights for implementing biological control strategies against long-horned beetles. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

16 pages, 2946 KiB  
Article
Comparative Metabolic Defense Responses of Three Tree Species to the Supplemental Feeding Behavior of Anoplophora glabripennis
by Ruohan Qi, Jiahe Pei, Quan Zhou, Keyu Hao, Yi Tian, Lili Ren and Youqing Luo
Int. J. Mol. Sci. 2024, 25(23), 12716; https://doi.org/10.3390/ijms252312716 - 26 Nov 2024
Viewed by 981
Abstract
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a [...] Read more.
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a limited understanding of the attraction ability and biochemical defense response of E. angustifolia to ALB. In this study, we conducted host selection experiments with ALB and then performed physiological and biochemical assays on twigs from different tree species before and after ALB feeding. We analyzed the differential metabolites using the liquid chromatograph–mass spectrometer method. The results showed that ALB’s feeding preference was E. angustifolia > P.× xiaohei var. gansuensis > P. alba var. pyramidalis. After ALB feeding, the content of soluble sugars, soluble proteins, flavonoids, and tannins decreased significantly in all species. In three comparison groups, a total of 492 differential metabolites were identified (E. angustifolia:195, P.× xiaohei var. gansuensis:255, P. alba var. pyramidalis:244). Differential metabolites were divided into overlapping and specific metabolites for analysis. The overlapping differential metabolites 7-isojasmonic acid, zerumbone, and salicin in the twigs of three tree species showed upregulation after ALB feeding. The specific metabolites silibinin, catechin, and geniposide, in E. angustifolia, significantly increased after being damaged. Differential metabolites enriched in KEGG pathways indicated that ALB feeding activated tyrosine metabolism and the biosynthesis of phenylpropanoids in three tree species, with a particularly high enrichment of differential metabolites in the flavonoid biosynthesis pathway in E. angustifolia. This study provides the metabolic defense strategies of different tree species against ALB feeding and proposes candidate metabolites that can serve as metabolic biomarkers, potentially offering valuable insights into using E. angustifolia as a control measure against ALB. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 2193 KiB  
Article
Further Evidence That Female Anoplophora glabripennis (Coleoptera: Cerambycidae) Utilizes Photo-Degradation to Produce Volatiles That Are Attractive to Adult Males
by Damon Crook, Jacob Wickham, Lili Ren, Zhichun Xu, Tappey H. Jones, Melissa Warden and Allard Cossé
Insects 2024, 15(12), 923; https://doi.org/10.3390/insects15120923 - 26 Nov 2024
Cited by 1 | Viewed by 1300
Abstract
The Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring A. glabripennis has been hindered by the [...] Read more.
The Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring A. glabripennis has been hindered by the fact that mate finding involves a rather complex series of behaviors and responses to several chemical (and visual), cues. Adults (female-biased) locate a tree via host kairomones. Research has demonstrated that female contact pheromone components are precursors that undergo abiotic oxidation to yield attractive volatile components. Males also produce a pheromone to attract other adults nearby before the final step of recognition by males to the female-produced trail and contact pheromones. Our research aimed to identify new female-produced components from ozone and UV-treated A. glabripennis body washes and test them for behavioral activity using laboratory and field assays. The ozone and UV treatment of virgin female extract yielded sixteen aldehydes, nine of which were found in trace amounts. All sixteen aldehydes elicited antennal responses (GC-EAD) in both males and females, although responses were clearer and more distinct with standards of hexanal, heptanal, octanal, nonanal, decanal, undecanal and dodecanal. Olfactometer assays showed that males were highly attracted to a blend of these seven aldehydes. Females did not show any attraction to the blend in olfactometer assays. Despite low population levels during field tests in 2018 in China, traps containing the aldehyde blend detected A. glabripennis on a weekly basis over 6 weeks and caught significantly more adults (mainly males) than control ‘flight intercept panel’ traps. Field tests in China in 2019 that used the aldehyde blend along with a three-component host blend lure also caught significantly more males (nearly 5×) than blank control traps. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

15 pages, 5395 KiB  
Article
Transcriptome and Expression Analysis of Glycerol Biosynthesis-Related Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae)
by Taihui Lan, Ranran Su, Zishu Dong, Xin Tong, Xialin Zheng and Xiaoyun Wang
Int. J. Mol. Sci. 2024, 25(21), 11834; https://doi.org/10.3390/ijms252111834 - 4 Nov 2024
Viewed by 1062
Abstract
Glenea cantor Fabricius (Cerambycidae: Lamiinae) is an important pest that damages kapok trees in Southeast Asia with a wide adaptability to temperature. Glycerol is a protectant and energy source for insects in low-temperature environments. However, glycerol biosynthesis-related genes at the molecular level are [...] Read more.
Glenea cantor Fabricius (Cerambycidae: Lamiinae) is an important pest that damages kapok trees in Southeast Asia with a wide adaptability to temperature. Glycerol is a protectant and energy source for insects in low-temperature environments. However, glycerol biosynthesis-related genes at the molecular level are limited in G. cantor. In this study, the supercooling points and freezing points at different stages were measured, and the cold hardiness of male and female pupae significantly differed. Moreover, a full-length transcriptome of G. cantor was established; glycerol kinase (GK) and glycerol-3-phosphate dehydrogenase (GPDH) genes, which are related to glycerol metabolism, were identified, with a special focus on their expression profiles. A total of 24,476 isoforms stemmed from the full-length transcriptome, along with 568 lncRNAs, 56 transcription factor (TF) families, and 1467 alternative splicing (AS) events. The KEGG pathway enrichment analysis revealed that the isoforms associated with AS were enriched primarily in glycerolipid and glycerophospholipid metabolism. In total, three GK genes and one GPDH gene were identified, and GcGK1 and GcGK3 presented differential sex expression during the pupal stage, which may play a role in thermal adaptability. This study provides a valuable transcriptional database of G. cantor and helps to elucidate the function of glycerol in the thermal adaptation mechanism of longhorn beetles. Full article
Show Figures

Figure 1

11 pages, 4120 KiB  
Article
Stridulatory Organs and Sound Recognition of Three Species of Longhorn Beetles (Coleoptera: Cerambycidae)
by Jia-Quan Wei, Xiao-Yun Wang, Xia-Lin Zheng and Xin Tong
Insects 2024, 15(11), 849; https://doi.org/10.3390/insects15110849 - 30 Oct 2024
Cited by 2 | Viewed by 1452
Abstract
Sound is an important medium of communication among insects. Some longhorn beetles produce sounds during their daily activities, and these sounds play a role in courtship, predation, and defense. However, whether there are differences in the sounds emitted by longhorn beetles and how [...] Read more.
Sound is an important medium of communication among insects. Some longhorn beetles produce sounds during their daily activities, and these sounds play a role in courtship, predation, and defense. However, whether there are differences in the sounds emitted by longhorn beetles and how to distinguish and recognize these sounds have not been investigated in detail. Here, the sounds of Glenea cantor (Fabricius), Moechotypa diphysis (Pascoe), and Psacothea hilaris (Pascoe) were collected, and the differences in their stridulatory organs were observed and compared using scanning electron microscopy (SEM). The characteristics of their sounds were analyzed using MATLAB. Linear prediction cepstral coefficients (LPCC) and Mel frequency cepstral coefficients (MFCC) were used to extract the sound features, and the support vector machine (SVM) model was used to identify the sounds of three species. The results showed that the stridulatory organs of three species of longhorn beetles differed in morphology and time domain, and the combination of MFCC and SVM had a better recognition ability. The difference in the stridulatory organs of longhorn beetles may be an important reason for the differences in the sounds they produce, and we discussed the application of insect sounds in insect classification. Full article
Show Figures

Graphical abstract

17 pages, 3427 KiB  
Article
Discriminating between Biotic and Abiotic Stress in Poplar Forests Using Hyperspectral and LiDAR Data
by Quan Zhou, Jinjia Kuang, Linfeng Yu, Xudong Zhang, Lili Ren and Youqing Luo
Remote Sens. 2024, 16(19), 3751; https://doi.org/10.3390/rs16193751 - 9 Oct 2024
Cited by 1 | Viewed by 1061
Abstract
Sustainable forest management faces challenges from various biotic and abiotic stresses. The Asian longhorned beetle (ALB) and drought stress both induce water shortages in poplar trees, but require different management strategies. In northwestern China, ALB and drought stress caused massive mortality in poplar [...] Read more.
Sustainable forest management faces challenges from various biotic and abiotic stresses. The Asian longhorned beetle (ALB) and drought stress both induce water shortages in poplar trees, but require different management strategies. In northwestern China, ALB and drought stress caused massive mortality in poplar shelterbelts, which seriously affected the ecological functions of poplars. Developing a large-scale detection method for discriminating them is crucial for applying targeted management. This study integrated UAV-hyperspectral and LiDAR data to distinguish between ALB and drought stress in poplars of China’s Three-North Shelterbelt. These data were analyzed using a Partial Least Squares-Support Vector Machine (PLS-SVM). The results showed that the LiDAR metric (elev_sqrt_mean_sq) was key in detecting drought, while the hyperspectral band (R970) was key in ALB detection, underscoring the necessity of integrating both sensors. Detection of ALB in poplars improved when the poplars were well watered. The classification accuracy was 94.85% for distinguishing well-watered from water-deficient trees, and 80.81% for detecting ALB damage. Overall classification accuracy was 78.79% when classifying four stress types: healthy, only ALB affected, only drought affected, and combined stress of ALB and drought. The results demonstrate the effectiveness of UAV-hyperspectral and LiDAR data in distinguishing ALB and drought stress in poplar forests, which contribute to apply targeted treatments based on the specific stress in poplars in northwest China. Full article
Show Figures

Figure 1

9 pages, 1003 KiB  
Article
Verification and Evaluation of Male-Produced Pheromone Components from the Citrus Long-Horned Beetle, Anoplophora chinensis (Forster) (Insecta: Coleoptera: Cerambycidae)
by Damon Crook, Emily Maynard and Mandy Furtado
Insects 2024, 15(9), 692; https://doi.org/10.3390/insects15090692 - 13 Sep 2024
Cited by 1 | Viewed by 1392
Abstract
The citrus long-horned beetle, Anoplophora chinensis (Coleoptera: Cerambycidae), is a highly polyphagous species native to eastern and southeastern Asia. Detection of these beetles is dependent on visual surveys, which are inefficient and labor-intensive. The identification and development of pheromone-based lures would help improve [...] Read more.
The citrus long-horned beetle, Anoplophora chinensis (Coleoptera: Cerambycidae), is a highly polyphagous species native to eastern and southeastern Asia. Detection of these beetles is dependent on visual surveys, which are inefficient and labor-intensive. The identification and development of pheromone-based lures would help improve survey efforts for A. chinensis should it become established within the US. We identified three antennally active male-produced chemical components (nonanal, 4-(n-heptyloxy)butan-1-ol, and 4-(n-heptyloxy)butanal), which were then tested for behavioral activity at our USDA Quarantine laboratory. When tested together in Y-tube behavioral assays, a three-component blend of the identified compounds was shown to be attractive to adult female A. chinensis. Pheromone production and behavior of A. chinensis and other closely related Anoplophora cerambycid species are discussed in relation to mate finding and potential monitoring. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 8529 KiB  
Article
Interactions at the Oviposition Scar: Molecular and Metabolic Insights into Elaeagnus angustifolia’s Resistance Response to Anoplophora glabripennis
by Chengcheng Li, Jiahe Pei, Lixiang Wang, Yi Tian, Lili Ren and Youqing Luo
Int. J. Mol. Sci. 2024, 25(17), 9504; https://doi.org/10.3390/ijms25179504 - 31 Aug 2024
Cited by 2 | Viewed by 1474
Abstract
The Russian olive (Elaeagnus angustifolia), which functions as a “dead-end trap tree” for the Asian long-horned beetle (Anoplophora glabripennis) in mixed plantations, can successfully attract Asian long-horned beetles for oviposition and subsequently kill the eggs by gum. This study [...] Read more.
The Russian olive (Elaeagnus angustifolia), which functions as a “dead-end trap tree” for the Asian long-horned beetle (Anoplophora glabripennis) in mixed plantations, can successfully attract Asian long-horned beetles for oviposition and subsequently kill the eggs by gum. This study aimed to investigate gum secretion differences by comparing molecular and metabolic features across three conditions—an oviposition scar, a mechanical scar, and a healthy branch—using high-performance liquid chromatography and high-throughput RNA sequencing methods. Our findings indicated that the gum mass secreted by an oviposition scar was 1.65 times greater than that secreted by a mechanical scar. Significant differences in gene expression and metabolism were observed among the three comparison groups. A Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis showed that an oviposition scar significantly affected starch and sucrose metabolism, leading to the discovery of 52 differentially expressed genes and 7 differentially accumulated metabolites. A network interaction analysis of differentially expressed metabolites and genes showed that EaSUS1, EaYfcE1, and EaPGM1 regulate sucrose, uridine diphosphate glucose, α-D-glucose-1P, and D-glucose-6P. Although the polysaccharide content in the OSs was 2.22 times higher than that in the MSs, the sucrose content was lower. The results indicated that the Asian long-horned beetle causes Russian olive sucrose degradation and D-glucose-6P formation. Therefore, we hypothesized that damage caused by the Asian long-horned beetle could enhance tree gum secretions through hydrolyzed sucrose and stimulate the Russian olive’s specific immune response. Our study focused on the first pair of a dead-end trap tree and an invasive borer pest in forestry, potentially offering valuable insights into the ecological self-regulation of Asian long-horned beetle outbreaks. Full article
(This article belongs to the Special Issue New Insights into Plants and Insects Interactions)
Show Figures

Figure 1

Back to TopTop