Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = long-term extreme surges variability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7816 KiB  
Article
Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022
by Hoiio Kong, Kechen Wu, Pak Wai Chan, Jinping Liu, Banglin Zhang and Jeremy Cheuk-Hin Leung
Appl. Sci. 2025, 15(4), 1764; https://doi.org/10.3390/app15041764 - 9 Feb 2025
Viewed by 1074
Abstract
In July 2023, 19 continuous days of very hot days in Hong Kong brought inconvenience to citizens and disasters to society. This long-lasting heat wave event is closely linked to the atmospheric variability on the quasi-biweekly to intraseasonal timescales. While extreme weather has [...] Read more.
In July 2023, 19 continuous days of very hot days in Hong Kong brought inconvenience to citizens and disasters to society. This long-lasting heat wave event is closely linked to the atmospheric variability on the quasi-biweekly to intraseasonal timescales. While extreme weather has aroused the attention of scientists and society, limited studies focus on quasi-biweekly to intraseasonal extreme (QBIE) weather. Thus, to address this issue, this study aims at examining the climatology and long-term variability of these QBIE events in Hong Kong. This study serves as one of the very few fundamental works that construct a century-long record of QBIE temperature events, based on in situ observation in Hong Kong, and further examines the climatology, diversity, and variability of these QBIE temperature events. A total of 382 QBIE heat waves and 510 QBIE cold surges are identified from 1885 to 2022, exhibiting various characteristics in their occurring time and seasonality. Based on ARIMA model and time series analyses, we find that while apparent interannual variability exists in QBIE heat wave and cold surge activity, short-term climate prediction of QBIE temperature events based on past patterns or common climate indices is largely unfeasible. This research provides a valuable historical reference for understanding QBIE weather in the Guangdong–Hong Kong–Macau Greater Bay Area and highlights the need for further studies on the predictability of QBIE weather in the future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 4915 KiB  
Article
Versatile Modelling of Extreme Surges in Connection with Large-Scale Circulation Drivers
by Lisa Baulon, Emma Imen Turki, Nicolas Massei, Gaël André, Yann Ferret and Nicolas Pouvreau
Atmosphere 2022, 13(5), 850; https://doi.org/10.3390/atmos13050850 - 23 May 2022
Cited by 2 | Viewed by 2252
Abstract
In this article, we investigate the dependence of extreme surges on the North Atlantic weather regime variability across different timescales using the North Atlantic Oscillation (NAO) and Scandinavian blocking (SCAND) indices. The analysis was done using time series of surges along the North [...] Read more.
In this article, we investigate the dependence of extreme surges on the North Atlantic weather regime variability across different timescales using the North Atlantic Oscillation (NAO) and Scandinavian blocking (SCAND) indices. The analysis was done using time series of surges along the North French Coast, covering long time periods (43 to 172 years of data). Time series that exhibited gaps were filled using linear interpolation to allow spectral analyses to be conducted. First, a continuous wavelet analysis on monthly maxima surges in the North French Coast was conducted to identify the multi-timescale variability. Second, a wavelet coherence analysis and maximum overlap discrete wavelet transform (MODWT) were used to study the timescale-dependent relationships between maxima surges and NAO or SCAND. Finally, NAO and SCAND were tested as physical covariates for a nonstationary generalized extreme value (GEV) distribution to fit monthly maxima surge series. Specific low-frequency variabilities characterizing these indices (extracted using MODWT) were also used as covariates to determine whether such specific variabilities would allow for even better GEV fitting. The results reveal common multi-annual timescales of variability between monthly maxima surge time series along the North French coasts: ~2–3 years, ~5–7 years, and ~12–17 years. These modes of variability were found to be mainly induced by the NAO and the SCAND. We identified a greater influence of the NAO on the monthly maxima surges of the westernmost stations (Brest, Cherbourg, Le Havre), while the SCAND showed a greater influence on the northernmost station (Dunkirk). This shows that the physical climate effects at multi-annual scales are manifested differently between the Atlantic/English Channel and the North Sea regions influenced by NAO and SCAND, respectively. Finally, the introduction of these two climate indices was found to clearly enhance GEV models as well as a few timescales of these indices. Full article
(This article belongs to the Special Issue Multi-Hazard Risk Assessment)
Show Figures

Figure 1

16 pages, 5218 KiB  
Article
Spatiotemporal Patterns and Evolution of Storm Surge Threats along the Southeastern Coastline of China
by Yue Zhang, Guosheng Li and Tengjiao Guo
Atmosphere 2019, 10(2), 61; https://doi.org/10.3390/atmos10020061 - 1 Feb 2019
Cited by 8 | Viewed by 3468
Abstract
The variability of storm surge poses a significant threat to coastal areas. A new metric named Accumulated Storm surge Potential Impact (ASPI) is proposed based on a new intensity parameter that removes other components from storm surge-induced water level rise. This new metric [...] Read more.
The variability of storm surge poses a significant threat to coastal areas. A new metric named Accumulated Storm surge Potential Impact (ASPI) is proposed based on a new intensity parameter that removes other components from storm surge-induced water level rise. This new metric quantifies storm surge threat by combining frequency and intensity. The results show that storm surge threat has increased since the late 1990s due to greater general storm surges. The extreme storm surge threat did not follow the increasing trend until the mid-2000s. Different regional distribution patterns are found along this coast. The storm surge threat exhibited a -++ zonal tripole pattern, the negative phase was along the north coastline of Hangzhou Gulf and the positive phase was from the center to southern coast area of Zhejiang province and along the eastern coast area of Leizhou Peninsula. Long-term storm surge threats change spatial distribution pattern in three periods. More precarious threats from the center to southern coast areas of Zhejiang province illustrated a poleward shift of storm surge threats consistent with the trend of long-term tropical cyclone landfall. Meanwhile, the strong threat along the eastern coast line of Leizhou Peninsula was sustained from 1960 to 1995, then became weaker from 1996 to 2015. The evolution pattern of storm surge threat along the southeastern coastline of China could be applied for coastal adaptation research under climate change scenarios. Full article
(This article belongs to the Special Issue Climate Change Impacts on Coastal Areas)
Show Figures

Figure 1

17 pages, 6525 KiB  
Article
Analysis on the Extreme Sea Levels Changes along the Coastline of Bohai Sea, China
by Jianlong Feng, Delei Li, Hui Wang, Qiulin Liu, Jianli Zhang, Yan Li and Kexiu Liu
Atmosphere 2018, 9(8), 324; https://doi.org/10.3390/atmos9080324 - 20 Aug 2018
Cited by 12 | Viewed by 4545
Abstract
Using hourly sea level data from four tide gauges, the changes of the extreme sea level in the Bohai Sea were analyzed in this work. Three components (i.e., mean sea level, tide and surge) as well as the tide–surge interaction were studied to [...] Read more.
Using hourly sea level data from four tide gauges, the changes of the extreme sea level in the Bohai Sea were analyzed in this work. Three components (i.e., mean sea level, tide and surge) as well as the tide–surge interaction were studied to find which component was important in the changes of extreme sea levels. Significant increasing trends exist in the mean sea level at four tide gauges from 1980 to 2016, and the increase rate ranges from 0.2 to 0.5 cm/year. The mean high tide levels show positive trends at four tide gauges, and the increasing rate (0.1 to 0.3 cm/year) is not small compared with the long-term trends of the mean sea levels. However, the mean tidal ranges show negative trends at Longkou, Qinhuangdao and Tanggu, with the rate from about −0.7 to −0.2 cm/year. At Qinhuangdao and Tanggu, the annual surge intensity shows explicit long-term decreasing trend. At all four tide gauges, the storm surge intensity shows distinct inter-annual variability and decadal variability. All four tide gauges show significant tide–surge interaction, the characteristics of the tide–surge interaction differ due to their locations, and no clear long-term change was found. Convincing evidence implies that the extreme sea levels increase during the past decades from 1980 to 2016 at all tide gauges, with the increasing rate differing at different percentile levels. The extreme sea level changes in the Bohai Sea are highly affected by the changes of mean sea level and high tide level, especially the latter. The surge variation contributes to the changes of extreme sea level at locations where the tide–surge interaction is relatively weak. Full article
(This article belongs to the Special Issue Storms, Jets and Other Meteorological Phenomena in Coastal Seas)
Show Figures

Figure 1

Back to TopTop