Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = long-lived plasma cell (LLPC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1803 KB  
Review
A Room for Long-Lived Plasma Cell Contribution in Immune Cytopenias?
by Tricia Don, Manisha Gadgeel and Süreyya Savaşan
Cancers 2025, 17(9), 1537; https://doi.org/10.3390/cancers17091537 - 1 May 2025
Viewed by 818
Abstract
Immune cytopenias, such as autoimmune hemolytic anemia, immune thrombocytopenia, and Evans syndrome, are characterized by autoantibodies targeting various blood cells, initiating their destruction. Interactions between T cells, B cells, their ultimate maturational plasma cell descendants, dendritic cells, and macrophages result in antibody production, [...] Read more.
Immune cytopenias, such as autoimmune hemolytic anemia, immune thrombocytopenia, and Evans syndrome, are characterized by autoantibodies targeting various blood cells, initiating their destruction. Interactions between T cells, B cells, their ultimate maturational plasma cell descendants, dendritic cells, and macrophages result in antibody production, including the autoreactive ones. Autoimmune phenomena can be idiopathic or associated with various immune dysregulation conditions or malignancies. Interventions disrupting this complex network at different levels have been used to treat immune cytopenias with certain levels of success. Some cases are known to be refractory to many different therapeutic approaches, including the ones eliminating B cells. In some such cases, targeting plasma cells resulted in disease control. Among plasma cell compartments, unique long-lived plasma cells (LLPCs) residing primarily in the bone marrow, are specialized antibody-producing cells with an extended lifespan, capable of persistently secreting antibodies. LLPCs can evade conventional therapeutic strategies designed to target often-proliferating cells. Research focusing on the role of LLPCs in autoimmune phenomena including immune cytopenias has provided evidence for their role, characterized by the sustained production of autoantibodies. Frequent genetic mutations and progression to other immune dysregulation entities have been reported in a group of children with immune cytopenias. This might provide new insights focusing on the potential underlying genetic and epigenetic mechanisms leading to generation and maintenance of LLPCs in autoimmune disorders. We provide a brief review of LLPC biology and evidence for their role in immune cytopenias with potential future implications in this article. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Hematologic Malignancies)
Show Figures

Figure 1

15 pages, 754 KB  
Review
Anti-B-Cell-Activating Factor (BAFF) Therapy: A Novel Addition to Autoimmune Disease Management and Potential for Immunomodulatory Therapy in Warm Autoimmune Hemolytic Anemia
by Mahija Cheekati and Irina Murakhovskaya
Biomedicines 2024, 12(7), 1597; https://doi.org/10.3390/biomedicines12071597 - 18 Jul 2024
Cited by 4 | Viewed by 4449
Abstract
Although rituximab is not specifically approved for the treatment of warm autoimmune hemolytic anemia (WAIHA), the First International Consensus Group recommends considering its use as part of the initial therapy for patients with severe disease and as a second-line therapy for primary WAIHA. [...] Read more.
Although rituximab is not specifically approved for the treatment of warm autoimmune hemolytic anemia (WAIHA), the First International Consensus Group recommends considering its use as part of the initial therapy for patients with severe disease and as a second-line therapy for primary WAIHA. Some patients do not respond to rituximab, and relapses are common. These relapses are associated with elevated B-cell-activating factor (BAFF) levels and the presence of quiescent long-lived plasma cells (LLPCs) in the spleen. A new group of immunomodulatory drugs, B-cell-activating factor inhibitors (BAFF-i), demonstrated efficacy in multiple autoimmune diseases and have the potential to improve WAIHA treatment outcomes by targeting B-cells and LLPCs. This article reviews the role of BAFF in autoimmune disorders and the currently available literature on the use of BAFF-directed therapies in various immunologic disorders, including WAIHA. Collectively, the clinical data thus far shows robust potential for targeting BAFF in WAIHA therapy. Full article
Show Figures

Figure 1

12 pages, 601 KB  
Review
B Cell Responses upon Human Papillomavirus (HPV) Infection and Vaccination
by Priya R. Prabhu, Joseph J. Carter and Denise A. Galloway
Vaccines 2022, 10(6), 837; https://doi.org/10.3390/vaccines10060837 - 25 May 2022
Cited by 19 | Viewed by 6952
Abstract
Infection with human papillomavirus (HPV) is the necessary cause of cervical cancer. Availability of vaccines against HPV makes it a highly preventable disease. HPV vaccines act through type-specific neutralizing antibodies produced by antigen-specific plasma cells known as long-lived plasma cells (LLPC). However, just [...] Read more.
Infection with human papillomavirus (HPV) is the necessary cause of cervical cancer. Availability of vaccines against HPV makes it a highly preventable disease. HPV vaccines act through type-specific neutralizing antibodies produced by antigen-specific plasma cells known as long-lived plasma cells (LLPC). However, just as any other vaccine, success of HPV vaccine is attributed to the immunologic memory that it builds, which is largely attained through generation and maintenance of a class of B cells named memory B cells (Bmem). Both LLPCs and Bmems are important in inducing and maintaining immune memory and it is therefore necessary to understand their role after HPV vaccination to better predict outcomes. This review summarizes current knowledge of B-cell responses following HPV vaccination and natural infection, including molecular signatures associated with these responses. Full article
(This article belongs to the Special Issue B Lymphocytes (B Cells) and Derived Antibodies)
Show Figures

Figure 1

15 pages, 567 KB  
Review
mRNA COVID-19 Vaccines and Long-Lived Plasma Cells: A Complicated Relationship
by Girolamo Giannotta and Nicola Giannotta
Vaccines 2021, 9(12), 1503; https://doi.org/10.3390/vaccines9121503 - 20 Dec 2021
Cited by 25 | Viewed by 11689
Abstract
mRNA COVID-19 vaccines have hegemonized the world market, and their administration to the population promises to stop the pandemic. However, the waning of the humoral immune response, which does not seem to last so many months after the completion of the vaccination program, [...] Read more.
mRNA COVID-19 vaccines have hegemonized the world market, and their administration to the population promises to stop the pandemic. However, the waning of the humoral immune response, which does not seem to last so many months after the completion of the vaccination program, has led us to study the molecular immunological mechanisms of waning immunity in the case of mRNA COVID-19 vaccines. We consulted the published scientific literature and from the few articles we found, we were convinced that there is an immunological memory problem after vaccination. Although mRNA vaccines have been demonstrated to induce antigen-specific memory B cells (MBCs) in the human population, there is no evidence that these vaccines induce the production of long-lived plasma cells (LLPCs), in a SARS-CoV-2 virus naïve population. This obstacle, in our point of view, is caused by the presence, in almost all subjects, of a cellular T and B cross-reactive memory produced during past exposures to the common cold coronaviruses. Due to this interference, it is difficult for a vaccination with the Spike protein alone, without adjuvants capable of prolonging the late phase of the generation of the immunological memory, to be able to determine the production of protective LLPCs. This would explain the possibility of previously and completely vaccinated subjects to become infected, already 4–6 months after the completion of the vaccination cycle. Full article
(This article belongs to the Special Issue Host Innate Immune Responses against SARS-CoV-2)
Show Figures

Figure 1

17 pages, 1126 KB  
Review
Targeting Multiple Myeloma through the Biology of Long-Lived Plasma Cells
by Adam Utley, Brittany Lipchick, Kelvin P. Lee and Mikhail A. Nikiforov
Cancers 2020, 12(8), 2117; https://doi.org/10.3390/cancers12082117 - 30 Jul 2020
Cited by 10 | Viewed by 6030
Abstract
Multiple myeloma (MM) is a hematological malignancy of terminally differentiated bone marrow (BM) resident B lymphocytes known as plasma cells (PC). PC that reside in the bone marrow include a distinct population of long-lived plasma cells (LLPC) that have the capacity to live [...] Read more.
Multiple myeloma (MM) is a hematological malignancy of terminally differentiated bone marrow (BM) resident B lymphocytes known as plasma cells (PC). PC that reside in the bone marrow include a distinct population of long-lived plasma cells (LLPC) that have the capacity to live for very long periods of time (decades in the human population). LLPC biology is critical for understanding MM disease induction and progression because MM shares many of the same extrinsic and intrinsic survival programs as LLPC. Extrinsic survival signals required for LLPC survival include soluble factors and cellular partners in the bone marrow microenvironment. Intrinsic programs that enhance cellular fidelity are also required for LLPC survival including increased autophagy, metabolic fitness, the unfolded protein response (UPR), and enhanced responsiveness to endoplasmic reticulum (ER) stress. Targeting LLPC cell survival mechanisms have led to standard of care treatments for MM including proteasome inhibition (Bortezomib), steroids (Dexamethasone), and immunomodulatory drugs (Lenalidomide). MM patients that relapse often do so by circumventing LLPC survival pathways targeted by treatment. Understanding the mechanisms by which LLPC are able to survive can allow us insight into the treatment of MM, which allows for the enhancement of therapeutic strategies in MM both at diagnosis and upon patient relapse. Full article
(This article belongs to the Special Issue Latest Development in Multiple Myeloma)
Show Figures

Figure 1

10 pages, 1525 KB  
Review
Factors That Govern the Induction of Long-Lived Antibody Responses
by Bryce Chackerian and David S. Peabody
Viruses 2020, 12(1), 74; https://doi.org/10.3390/v12010074 - 7 Jan 2020
Cited by 32 | Viewed by 5561
Abstract
The induction of long-lasting, high-titer antibody responses is critical to the efficacy of many vaccines. The ability to produce durable antibody responses is governed by the generation of the terminally differentiated antibody-secreting B cells known as long-lived plasma cells (LLPCs). Once induced, LLPCs [...] Read more.
The induction of long-lasting, high-titer antibody responses is critical to the efficacy of many vaccines. The ability to produce durable antibody responses is governed by the generation of the terminally differentiated antibody-secreting B cells known as long-lived plasma cells (LLPCs). Once induced, LLPCs likely persist for decades, providing long-term protection against infection. The factors that control the generation of this important class of B cells are beginning to emerge. In particular, antigens with highly dense, multivalent structures are especially effective. Here we describe some pathogens for which the induction of long-lived antibodies is particularly important, and discuss the basis for the extraordinary ability of multivalent antigens to drive differentiation of naïve B cells to LLPCs. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccines)
Show Figures

Figure 1

Back to TopTop