Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = local Lorentz symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 419 KiB  
Article
Spontaneous and Explicit Spacetime Symmetry Breaking in Einstein–Cartan Theory with Background Fields
by Robert Bluhm and Yu Zhi
Symmetry 2024, 16(1), 25; https://doi.org/10.3390/sym16010025 - 24 Dec 2023
Cited by 7 | Viewed by 1623
Abstract
Explicit and spontaneous breaking of spacetime symmetry under diffeomorphisms, local translations, and local Lorentz transformations due to the presence of fixed background fields is examined in Einstein–Cartan theory. In particular, the roles of torsion and violation of local translation invariance are highlighted. The [...] Read more.
Explicit and spontaneous breaking of spacetime symmetry under diffeomorphisms, local translations, and local Lorentz transformations due to the presence of fixed background fields is examined in Einstein–Cartan theory. In particular, the roles of torsion and violation of local translation invariance are highlighted. The nature of the types of background fields that can arise and how they cause spacetime symmetry breaking is discussed. With explicit breaking, potential no-go results are known to exist, which if not evaded lead to inconsistencies between the Bianchi identities, Noether identities, and the equations of motion. These are examined in detail, and the effects of nondynamical backgrounds and explicit breaking on the energy–momentum tensor when torsion is present are discussed as well. Examples illustrating various features of both explicit and spontaneous breaking of local translations are presented and compared to the case of diffeomorphism breaking. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
20 pages, 392 KiB  
Review
Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids
by Arus Harutyunyan and Armen Sedrakian
Symmetry 2023, 15(2), 494; https://doi.org/10.3390/sym15020494 - 13 Feb 2023
Cited by 4 | Viewed by 1921
Abstract
In this work, we perform a phenomenological derivation of the first- and second-order relativistic hydrodynamics of dissipative fluids. To set the stage, we start with a review of the ideal relativistic hydrodynamics from energy–momentum and particle number conservation equations. We then go on [...] Read more.
In this work, we perform a phenomenological derivation of the first- and second-order relativistic hydrodynamics of dissipative fluids. To set the stage, we start with a review of the ideal relativistic hydrodynamics from energy–momentum and particle number conservation equations. We then go on to discuss the matching conditions to local thermodynamical equilibrium, symmetries of the energy–momentum tensor, decomposition of dissipative processes according to their Lorentz structure, and, finally, the definition of the fluid velocity in the Landau and Eckart frames. With this preparatory work, we first formulate the first-order (Navier–Stokes) relativistic hydrodynamics from the entropy flow equation, keeping only the first-order gradients of thermodynamical forces. A generalized form of diffusion terms is found with a matrix of diffusion coefficients describing the relative diffusion between various flavors. The procedure of finding the dissipative terms is then extended to the second order to obtain the most general form of dissipative function for multiflavor systems up to the second order in dissipative fluxes. The dissipative function now includes in addition to the usual second-order transport coefficients of Israel–Stewart theory also second-order diffusion between different flavors. The relaxation-type equations of second-order hydrodynamics are found from the requirement of positivity of the dissipation function, which features the finite relaxation times of various dissipative processes that guarantee the causality and stability of the fluid dynamics. These equations contain a complete set of nonlinear terms in the thermodynamic gradients and dissipative fluxes arising from the entropy current, which are not present in the conventional Israel–Stewart theory. Full article
12 pages, 1801 KiB  
Article
Underground Tests of Quantum Mechanics by the VIP Collaboration at Gran Sasso
by Fabrizio Napolitano, Andrea Addazi, Angelo Bassi, Massimiliano Bazzi, Mario Bragadireanu, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Maaneli Derakhshani, Sandro Donadi, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Simone Manti, Antonino Marcianò, Johann Marton, Marco Miliucci, Edoardo Milotti, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Symmetry 2023, 15(2), 480; https://doi.org/10.3390/sym15020480 - 11 Feb 2023
Cited by 3 | Viewed by 2574
Abstract
Modern physics lays its foundations on the pillars of Quantum Mechanics (QM), which has been proven successful to describe the microscopic world of atoms and particles, leading to the construction of the Standard Model. Despite the big success, the old open questions at [...] Read more.
Modern physics lays its foundations on the pillars of Quantum Mechanics (QM), which has been proven successful to describe the microscopic world of atoms and particles, leading to the construction of the Standard Model. Despite the big success, the old open questions at its very heart, such as the measurement problem and the wave function collapse, are still open. Various theories consider scenarios which could encompass a departure from the predictions of the standard QM, such as extra-dimensions or deformations of the Lorentz/Poincaré symmetries. At the Italian National Gran Sasso underground Laboratory LNGS, we search for evidence of new physics proceeding from models beyond standard QM, using radiation detectors. Collapse models addressing the foundations of QM, such as the gravity-related Diósi–Penrose (DP) and Continuous Spontaneous Localization (CSL) models, predict the emission of spontaneous radiation, which allows experimental tests. Using a high-purity Germanium detector, we could exclude the natural parameterless version of the DP model and put strict bounds on the CSL one. In addition, forbidden atomic transitions could prove a possible violation of the Pauli Exclusion Principle (PEP) in open and closed systems. The VIP-2 experiment is currently in operation, aiming at detecting PEP-violating signals in Copper with electrons; the VIP-3 experiment upgrade is foreseen to become operative in the next few years. We discuss the VIP-Lead experiment on closed systems, and the strong bounds it sets on classes of non-commutative quantum gravity theories, such as the θ–Poincaré theory. Full article
(This article belongs to the Special Issue Symmetry and Pauli Exclusion Principle)
Show Figures

Figure 1

8 pages, 498 KiB  
Concept Paper
Coulomb Force from Non-Local Self-Assembly of Multi-Peak Densities in a Charged Space Continuum
by Igor É. Bulyzhenkov
Particles 2023, 6(1), 136-143; https://doi.org/10.3390/particles6010007 - 20 Jan 2023
Cited by 1 | Viewed by 2142
Abstract
Maxwell’s electrodynamics admits radial charge densities of the elementary organization with one vertex of the spherical symmetry. A multi-vertex distribution of sharply inhomogeneous charge densities can also be described by monistic field solutions to Maxwell’s equations–equalities. Coulomb–Lorentz forces are exerted locally to correlated [...] Read more.
Maxwell’s electrodynamics admits radial charge densities of the elementary organization with one vertex of the spherical symmetry. A multi-vertex distribution of sharply inhomogeneous charge densities can also be described by monistic field solutions to Maxwell’s equations–equalities. Coulomb–Lorentz forces are exerted locally to correlated electric densities in their volume organization with the fixed self-energy integral. The long-range Coulomb interaction between the dense peaks of the charged space continuum can be described quantitatively through bulk integrals of local tensions within observable bodies in favor of the monistic all-unity in the material space physics of Descartes and Russian cosmists. Full article
Show Figures

Figure 1

28 pages, 848 KiB  
Article
The Primordial Particle Accelerator of the Cosmos
by Asher Yahalom
Universe 2022, 8(11), 594; https://doi.org/10.3390/universe8110594 - 11 Nov 2022
Cited by 3 | Viewed by 2121
Abstract
In a previous paper we have shown that superluminal particles are allowed by the general relativistic theory of gravity provided that the metric is locally Euclidean. Here we calculate the probability density function of a canonical ensemble of superluminal particles as function of [...] Read more.
In a previous paper we have shown that superluminal particles are allowed by the general relativistic theory of gravity provided that the metric is locally Euclidean. Here we calculate the probability density function of a canonical ensemble of superluminal particles as function of temperature. This is done for both space-times invariant under the Lorentz symmetry group, and for space times invariant under an Euclidean symmetry group. Although only the Lorentzian metric is stable for normal matter density, an Euclidian metric can be created under special gravitational circumstances and persist in a limited region of space-time consisting of the very early universe, which is characterized by extremely high densities and temperatures. Superluminal particles also allow attaining thermodynamic equilibrium at a shorter duration and suggest a rapid expansion of the matter density. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

24 pages, 9915 KiB  
Article
Significance of Chemical Reaction and Lorentz Force on Third-Grade Fluid Flow and Heat Transfer with Darcy–Forchheimer Law over an Inclined Exponentially Stretching Sheet Embedded in a Porous Medium
by Amir Abbas, Ramsha Shafqat, Mdi Begum Jeelani and Nadiyah Hussain Alharthi
Symmetry 2022, 14(4), 779; https://doi.org/10.3390/sym14040779 - 8 Apr 2022
Cited by 41 | Viewed by 3205
Abstract
The combined impact of a linear chemical reaction and Lorentz force on heat and mass transfer in a third-grade fluid with the Darcy–Forchheimer relation over an inclined, exponentially stretching surface embedded in a porous medium is investigated. The proposed process is mathematically expressed [...] Read more.
The combined impact of a linear chemical reaction and Lorentz force on heat and mass transfer in a third-grade fluid with the Darcy–Forchheimer relation over an inclined, exponentially stretching surface embedded in a porous medium is investigated. The proposed process is mathematically expressed in terms of nonlinear and coupled partial differential equations, with the symmetry of the conditions normal to the surface. To solve the mathematical model of the proposed phenomenon, the partial differential equations are first reduced to ordinary differential equations; then, MATLAB built-in Numerical Solver bvp4c is used to obtain the numerical results of these equations. The influence of all the pertinent parameters that appeared in the flow model on the unknown material properties of interest is depicted in the forms of tables and graphs. The physical attitude of the unknown variables is discussed with physical reasoning. From the numerical solutions, it is inferred that, as Lorentz force parameter M is increased, the velocity of the fluid decreases, but fluid temperature and mass concentration increase. This is due to the fact that Lorentz force retards the motion of fluid, and the increasing resistive force causes the rise in the temperature of the fluid. It is also noted that, owing to an increase in the magnitude of chemical reaction parameter R, the velocity profile and the mass concentration decline as well, but the fluid temperature increases in a reasonable manner. It is noted that, by augmenting the values of the local inertial coefficient Fr and the permeability parameter K*, the velocity field decreases, the temperature field increases, and mass concentration also increases with reasonable difference. Increasing values of Prandtl number Pr results in a decrease in the profiles of velocity and temperature. All the numerical results are computed at the angle of inclination α=π/6. The current results are compared with the available results in the existing literature for this special case, and there is good agreement between them that shows the validation of the present study. All the numerical results show asymptotic behavior by satisfying the given boundary conditions. Full article
(This article belongs to the Special Issue Symmetry in CFD: Convection, Diffusion and Dynamics)
Show Figures

Figure 1

16 pages, 305 KiB  
Article
Weak Gravitation in the 4+1 Formalism
by Martin Land
Universe 2022, 8(3), 185; https://doi.org/10.3390/universe8030185 - 16 Mar 2022
Cited by 4 | Viewed by 2212
Abstract
The 4+1 formalism in general relativity (GR) prescribes field equations for the spacetime metric γμνx,τ which is local in the spacetime coordinates x and evolves according to an external “worldtime” τ. This formalism extends to GR the [...] Read more.
The 4+1 formalism in general relativity (GR) prescribes field equations for the spacetime metric γμνx,τ which is local in the spacetime coordinates x and evolves according to an external “worldtime” τ. This formalism extends to GR the Stueckelberg Horwitz Piron (SHP) framework, developed to address the various issues known as the problem of time as they appear in electrodynamics. SHP field theories exhibit a formal 5D symmetry on (x,τ) that is strategically broken to 4+1 representations of the Lorentz group, resulting in a manifestly covariant canonical formalism describing the τ-evolution of spacetime structures as an initial value problem. Einstein equations for γμνx,τ are found by constructing a 5D pseudo-manifold (combining 4D geometry and τ-dynamics) and performing the natural foliation under broken 5D symmetry. This paper discusses weak gravitation in the 4+1 formalism, demonstrating the natural decomposition of the field equations into first-order evolution equations for the unconstrained 4D metric, and the propagation of constraints associated with the Bianchi identity. Full article
(This article belongs to the Special Issue Numerical Relativity)
15 pages, 298 KiB  
Article
Towards a Theory of Quantum Gravity from Neural Networks
by Vitaly Vanchurin
Entropy 2022, 24(1), 7; https://doi.org/10.3390/e24010007 - 21 Dec 2021
Cited by 7 | Viewed by 5108
Abstract
Neural network is a dynamical system described by two different types of degrees of freedom: fast-changing non-trainable variables (e.g., state of neurons) and slow-changing trainable variables (e.g., weights and biases). We show that the non-equilibrium dynamics of trainable variables can be described by [...] Read more.
Neural network is a dynamical system described by two different types of degrees of freedom: fast-changing non-trainable variables (e.g., state of neurons) and slow-changing trainable variables (e.g., weights and biases). We show that the non-equilibrium dynamics of trainable variables can be described by the Madelung equations, if the number of neurons is fixed, and by the Schrodinger equation, if the learning system is capable of adjusting its own parameters such as the number of neurons, step size and mini-batch size. We argue that the Lorentz symmetries and curved space-time can emerge from the interplay between stochastic entropy production and entropy destruction due to learning. We show that the non-equilibrium dynamics of non-trainable variables can be described by the geodesic equation (in the emergent space-time) for localized states of neurons, and by the Einstein equations (with cosmological constant) for the entire network. We conclude that the quantum description of trainable variables and the gravitational description of non-trainable variables are dual in the sense that they provide alternative macroscopic descriptions of the same learning system, defined microscopically as a neural network. Full article
(This article belongs to the Section Quantum Information)
17 pages, 327 KiB  
Review
New Symmetries, Conserved Quantities and Gauge Nature of a Free Dirac Field
by Vladimir V. Kassandrov and Nina V. Markova
Symmetry 2021, 13(12), 2288; https://doi.org/10.3390/sym13122288 - 1 Dec 2021
Cited by 1 | Viewed by 1755
Abstract
We present and amplify some of our previous statements on non-canonical interrelations between the solutions to free Dirac equation (DE) and Klein–Gordon equation (KGE). We demonstrate that all the solutions to the DE (possessing point- or string-like singularities) can be obtained via differentiation [...] Read more.
We present and amplify some of our previous statements on non-canonical interrelations between the solutions to free Dirac equation (DE) and Klein–Gordon equation (KGE). We demonstrate that all the solutions to the DE (possessing point- or string-like singularities) can be obtained via differentiation of a corresponding pair of the KGE solutions for a doublet of scalar fields. In this way, we obtain a “spinor analogue” of the mesonic Yukawa potential and previously unknown chains of solutions to DE and KGE, as well as an exceptional solution to the KGE and DE with a finite value of the field charge (“localized” de Broglie wave). The pair of scalar “potentials” is defined up to a gauge transformation under which corresponding solution of the DE remains invariant. Under transformations of Lorentz group, canonical spinor transformations form only a subclass of a more general class of transformations of the solutions to DE upon which the generating scalar potentials undergo transformations of internal symmetry intermixing their components. Under continuous turn by one complete revolution the transforming solutions, as a rule, return back to their initial values (“spinor two-valuedness” is absent). With an arbitrary solution of the DE, one can associate, apart from the standard one, a non-canonical set of conserved quantities, positive definite “energy” density among them, and with any KGE solution-positive definite “probability density”, etc. Finally, we discuss a generalization of the proposed procedure to the case when the external electromagnetic field is present. Full article
(This article belongs to the Special Issue Current Issues in Particle Physics)
8 pages, 371 KiB  
Article
Minimizing Curvature in Euclidean and Lorentz Geometry
by Martin Tamm
Symmetry 2021, 13(8), 1433; https://doi.org/10.3390/sym13081433 - 5 Aug 2021
Cited by 2 | Viewed by 1875
Abstract
In this paper, an interesting symmetry in Euclidean geometry, which is broken in Lorentz geometry, is studied. As it turns out, attempting to minimize the integral of the square of the scalar curvature leads to completely different results in these two cases. The [...] Read more.
In this paper, an interesting symmetry in Euclidean geometry, which is broken in Lorentz geometry, is studied. As it turns out, attempting to minimize the integral of the square of the scalar curvature leads to completely different results in these two cases. The main concern in this paper is about metrics in R3, which are close to being invariant under rotation. If we add a time-axis and let the metric start to rotate with time, it turns out that, in the case of (locally) Euclidean geometry, the (four-dimensional) scalar curvature will increase with the speed of rotation as expected. However, in the case of Lorentz geometry, the curvature will instead initially decrease. In other words, rotating metrics can, in this case, be said to be less curved than non-rotating ones. This phenomenon seems to be very general, but because of the enormous amount of computations required, it will only be proved for a class of metrics which are close to the flat one, and the main (symbolic) computations have been carried out on a computer. Although the results here are purely mathematical, there is also a connection to physics. In general, a deeper understanding of Lorentz geometry is of fundamental importance for many applied problems. Full article
(This article belongs to the Special Issue Mathematical Physics: Topics and Advances)
Show Figures

Figure 1

11 pages, 290 KiB  
Article
Falling from Rest: Particle Creation in a Dropped Cavity
by Francesco Sorge
Symmetry 2021, 13(7), 1139; https://doi.org/10.3390/sym13071139 - 25 Jun 2021
Cited by 1 | Viewed by 1461
Abstract
We discuss the process of particle creation in the case of a scalar quantum field confined to a small cavity, initially at rest, which is suddenly dropped in a static gravitational field. We show that, due to the transition from a Schwarzschild to [...] Read more.
We discuss the process of particle creation in the case of a scalar quantum field confined to a small cavity, initially at rest, which is suddenly dropped in a static gravitational field. We show that, due to the transition from a Schwarzschild to a Minkowski background, as perceived by a comoving observer, field particles are excited out of the quantum vacuum. The density of the created quanta depends on the proper gravitational acceleration as well as on a parameter α1/Δt, with Δt representing the typical time duration of the transition. For the specific acceleration profile considered, the energy spectrum of the created quanta roughly resembles a two-dimensional Planckian distribution, whose equivalent temperature mimics the Hawking-Unruh temperature, with the detector acceleration (or the black hole surface gravity) replaced by the parameter cα. We briefly comment on possible issues related to local Lorentz symmetry. Full article
22 pages, 351 KiB  
Article
Spin Current in BF Theory
by Malik Almatwi
Physics 2021, 3(2), 427-448; https://doi.org/10.3390/physics3020029 - 7 Jun 2021
Viewed by 2770
Abstract
In this paper, a current that is called spin current and corresponds to the variation of the matter action in BF theory with respect to the spin connection A which takes values in Lie algebra so(3,C), in [...] Read more.
In this paper, a current that is called spin current and corresponds to the variation of the matter action in BF theory with respect to the spin connection A which takes values in Lie algebra so(3,C), in self-dual formalism is introduced. For keeping the 2-form Bi constraint (covariant derivation) DBi=0 satisfied, it is suggested adding a new term to the BF Lagrangian using a new field ψi, which can be used for calculating the spin current. The equations of motion are derived and the solutions are dicussed. It is shown that the solutions of the equations do not require a specific metric on the 4-manifold M, and one just needs to know the symmetry of the system and the information about the spin current. Finally, the solutions for spherically and cylindrically symmetric systems are found. Full article
(This article belongs to the Section Classical Physics)
11 pages, 283 KiB  
Article
Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory
by Quentin G. Bailey
Symmetry 2021, 13(5), 834; https://doi.org/10.3390/sym13050834 - 10 May 2021
Cited by 7 | Viewed by 1775
Abstract
We examined the basic conservation laws for diffeomorphism symmetry in the context of spontaneous diffeomorphism and local Lorentz-symmetry breaking. The conservation laws were used as constraints on a generic series of terms in an expansion around a flat background. We found all such [...] Read more.
We examined the basic conservation laws for diffeomorphism symmetry in the context of spontaneous diffeomorphism and local Lorentz-symmetry breaking. The conservation laws were used as constraints on a generic series of terms in an expansion around a flat background. We found all such terms for a two-tensor coupling to cubic order in the metric and tensor field fluctuations. The results are presented in a form that can be used for phenomenological calculations. One key result is that if we preserve the underlying diffeomorphism symmetry in a spontaneous-symmetry breaking scenario, one cannot decouple the two-tensor fluctuations from the metric fluctuations at the level of the action, except in special cases of the quadratic actions. Full article
(This article belongs to the Special Issue Space-Time Symmetries and Violations of Lorentz Invariance)
31 pages, 473 KiB  
Article
Broken Scale Invariance, Gravity Mass, and Dark Energy inModified Einstein Gravity with Two Measure Finsler like Variables
by Panayiotis Stavrinos and Sergiu I. Vacaru
Universe 2021, 7(4), 89; https://doi.org/10.3390/universe7040089 - 3 Apr 2021
Cited by 13 | Viewed by 2723
Abstract
We study new classes of generic off-diagonal and diagonal cosmological solutions for effective Einstein equations in modified gravity theories (MGTs), with modified dispersion relations (MDRs), and encoding possible violations of (local) Lorentz invariance (LIVs). Such MGTs are constructed for actions and Lagrange densities [...] Read more.
We study new classes of generic off-diagonal and diagonal cosmological solutions for effective Einstein equations in modified gravity theories (MGTs), with modified dispersion relations (MDRs), and encoding possible violations of (local) Lorentz invariance (LIVs). Such MGTs are constructed for actions and Lagrange densities with two non-Riemannian volume forms (similar to two measure theories (TMTs)) and associated bimetric and/or biconnection geometric structures. For conventional nonholonomic 2 + 2 splitting, we can always describe such models in Finsler-like variables, which is important for elaborating geometric methods of constructing exact and parametric solutions. Examples of such Finsler two-measure formulations of general relativity (GR) and MGTs are considered for Lorentz manifolds and their (co) tangent bundles and abbreviated as FTMT. Generic off-diagonal metrics solving gravitational field equations in FTMTs are determined by generating functions, effective sources and integration constants, and characterized by nonholonomic frame torsion effects. By restricting the class of integration functions, we can extract torsionless and/or diagonal configurations and model emergent cosmological theories with square scalar curvature, R2, when the global Weyl-scale symmetry is broken via nonlinear dynamical interactions with nonholonomic constraints. In the physical Einstein–Finsler frame, the constructions involve: (i) nonlinear re-parametrization symmetries of the generating functions and effective sources; (ii) effective potentials for the scalar field with possible two flat regions, which allows for a unified description of locally anisotropic and/or isotropic early universe inflation related to acceleration cosmology and dark energy; (iii) there are “emergent universes” described by off-diagonal and diagonal solutions for certain nonholonomic phases and parametric cosmological evolution resulting in various inflationary phases; (iv) we can reproduce massive gravity effects in two-measure theories. Finally, we study a reconstructing procedure for reproducing off-diagonal FTMT and massive gravity cosmological models as effective Einstein gravity or Einstein–Finsler theories. Full article
(This article belongs to the Special Issue Modified Theories of Gravity and Cosmological Applications)
6 pages, 381 KiB  
Proceeding Paper
Casimir Effect as a Probe for New Physics Phenomenology
by Luciano Petruzziello
Phys. Sci. Forum 2021, 2(1), 17; https://doi.org/10.3390/ECU2021-09307 - 22 Feb 2021
Viewed by 1782
Abstract
We show some recent cutting-edge results associated with the Casimir effect. Specifically, we focused our attention on the remarkable sensitivity of the Casimir effect to new physics phenomenology. Such an awareness can be readily discerned by virtue of the existence of extra contributions [...] Read more.
We show some recent cutting-edge results associated with the Casimir effect. Specifically, we focused our attention on the remarkable sensitivity of the Casimir effect to new physics phenomenology. Such an awareness can be readily discerned by virtue of the existence of extra contributions that the measurable quantities (such as the emergent pressure and strength within the experimental apparatus) acquire for a given physical setting. In particular, by relying on the above framework, we outlined the possibility of detecting the predictions of a novel quantum field theoretical description for particle mixing according to which the flavor and the mass vacuum are unitarily non-equivalent. Furthermore, by extending the very same formalism to curved backgrounds, the opportunity to probe extended models of gravity that encompass local Lorentz symmetry breaking and the strong equivalence principle violation was also discussed. Finally, the influence of quantum gravity on the Casimir effect was briefly tackled by means of heuristic considerations. In a similar scenario, the presence of a minimal length at the Planck scale was the source of the discrepancy with the standard outcomes. Full article
(This article belongs to the Proceedings of The 1st Electronic Conference on Universe)
Show Figures

Figure 1

Back to TopTop